
Enhanced Full-Text Search Specialty Data Store
User’s Guide

Adaptive Server® Enterprise
15.0

DOCUMENT ID: DC36521-01-1500-01

LAST REVISED: July 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server,
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase
Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup,
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo),
SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib,
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center,
Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL,
WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc.
02/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

User’s Guide iii

About This Book ... ix

CHAPTER 1 Introduction ... 1
Capabilities of the Enhanced Full-Text Search Engine.................... 1

High availability ... 3

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine 5
Components of the Enhanced Full-Text Search engine................... 5

The source table.. 5
The Verity collections .. 6
Filters... 6
The text_db database.. 6
The index table.. 7
The text_events table .. 8
Relationships between the components.................................... 9

How a full-text search works .. 10

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches................. 13
Configuring Adaptive Server for an Enhanced Full-Text Search engine

13
Enabling configuration parameters.. 14
Running the installtextserver script ... 14
Running the installmessages script ... 16
Running the installevent script .. 17
Naming the local Adaptive Server ... 18

Creating and maintaining text indexes ... 19
Setting up source tables for indexing 19
Creating the text index and index table 20
Bringing the database online for full-text searches 22
Propagating changes to the text index 23
Replicating text indexes .. 23
Example: enabling a new database for text searches............. 24
Indexing the euro symbol .. 26

Contents

iv Enhanced Full-Text Search Specialty Data Store

CHAPTER 4 Setting Up Verity Functions.. 27
Enabling query-by-example, summarization, and clustering.......... 27

Editing the master style.prm file .. 28
Editing individual style.prm files .. 29

Setting up a column to use as a sort specification 30
Using filters on text that contains tags ... 32
Creating a custom thesaurus ... 34

Examining the default thesaurus (optional) 35
Creating the control file ... 35
Creating the thesaurus .. 37
Replacing the default thesaurus with the custom thesaurus ... 37

Creating topics ... 38
Creating an outline file... 39
Creating a topic set directory... 40
Creating a knowledge base map... 40
Defining the location of the knowledge base map................... 41
Executing queries against defined topics 41
Troubleshooting topics .. 42

CHAPTER 5 Writing Full-Text Search Queries ... 43
Components of a full-text search query ... 43

Default behaviour .. 44
Pseudo columns in the index table .. 44

Using the score column to relevance-rank search results....... 45
Using the sort_by column to specify a sort order 46
Using the summary column to summarize documents............ 47
Using pseudo columns to request clustered result sets 48

Full-text search operators .. 50
Considerations when using Verity operators........................... 51
Using the Verity operators... 52

Operator modifiers ... 60

CHAPTER 6 System Administration.. 63
Starting the Enhanced Full-Text Search engine on UNIX.............. 63

Creating the runserver file ... 63
Starting the Enhanced Full-Text Search engine on Windows NT .. 65

Starting the Enhanced Full-Text Search engine as a service . 65
Shutting down the Enhanced Full-Text Search engine 66
Modifying the configuration parameters ... 67

Modifying configuration values .. 69
Available configuration parameters ... 69
Setting the default language.. 70
Setting the default character set.. 71

Contents

User’s Guide v

Indexing on the euro symbol ... 72
Setting the default sort order ... 72
Setting trace flags.. 73
Setting Open Server trace flags .. 74
Setting case sensitivity .. 75

Backup and recovery for the Enhanced Full-Text Search engine.. 75
Customizable backup and restore... 76
Backing up Verity collections... 76
Restoring collections and text indexes from backup 77

CHAPTER 7 Performance and Tuning.. 79
Updating existing indexes .. 79
Increasing query performance ... 80

Limiting the number of rows .. 80
Ensuring the correct join order for queries 80

Reconfiguring Adaptive Server .. 81
cis cursor rows .. 81
cis packet size ... 82

Reconfiguring the Enhanced Full-Text Search engine................... 82
batch_size .. 82
min_sessions and max_sessions.. 83

Using sp_text_notify... 83
Configuring multiple Enhanced Full-Text Search engines 84

Creating multiple Enhanced Full-Text Search engines at start-up
84

Adding Enhanced Full-Text Search engines 84
Configuring additional Enhanced Full-Text Search engines ... 85

Multiple users ... 85
File Descriptors and Enhanced Full-Text Search........................... 86

CHAPTER 8 Verity Topics ... 89
What are topics? .. 89

Topic organization ... 90
Weight assignments .. 90

Using a topic outline file ... 90
Making topics available .. 91

Setup process ... 91
Knowledge bases of topics .. 91

Combining topics into a knowledge base 92
Structure of topics .. 93

Top-level topics ... 94
Subtopics... 94
Evidence topics ... 95

Contents

vi Enhanced Full-Text Search Specialty Data Store

Topic and subtopic relationships ... 95
Maximum number of topics .. 96

Topic naming issues.. 96
Verity query language .. 97

Query language summary ... 97
Operator precedence rules.. 101

Sample topic outlines ... 102
Operator reference... 104

ACCRUE operator... 104
ALL operator.. 104
AND operator .. 104
ANY operator... 104
CONTAINS operator ... 105
ENDS operator .. 105
= (EQUALS) operator .. 105
FILTER operator.. 106
> (GREATER THAN) operator .. 106
>= (GREATER THAN OR EQUAL TO) operator................... 106
< (LESS THAN) operator... 106
<= (LESS THAN OR EQUAL TO) operator........................... 107
IN operator .. 107
MATCHES operator .. 107
NEAR operator .. 108
NEAR/N operator .. 108
OR operator... 109
PARAGRAPH operator ... 109
PHRASE operator ... 109
SENTENCE operator .. 109
SOUNDEX operator .. 110
STARTS operator.. 110
STEM operator .. 110
SUBSTRING operator ... 110
THESAURUS operator.. 111
TYPO/N operator... 111
WILDCARD operator... 111
Using wildcard special characters ... 111
Searching for nonalphanumeric characters........................... 112
WORD operator... 113

Modifier reference .. 113
CASE modifier... 114
MANY modifier .. 114
NOT modifier ... 114
ORDER modifier.. 115

Weights and document importance.. 115

User’s Guide vii

Topic weights... 115
Which operators accept weights.. 116
How weights affect importance.. 117
Assigning weights .. 118
Automatic weight assignments .. 120
Tips for assigning weights ... 120
Changing weights .. 120

Topic scoring and document importance...................................... 121
Designing topics ... 124
Preparing your topic design.. 124

Understanding your information needs.................................. 124
Understanding your documents... 125
Using scanned data ... 126
Categorizing document samples ... 126

Topic design strategies... 126
Top-down design ... 127
Bottom-up design... 127

Designing the initial topic.. 128
Outlining a topic ... 128
Top-down topic outline example .. 129
Bottom-up topic outline example ... 133

APPENDIX A System Procedures... 139
sp_check_text_index .. 140
sp_clean_text_events... 141
sp_clean_text_indexes ... 141
sp_create_text_index ... 142
sp_drop_text_index .. 144
sp_help_text_index... 145
sp_optimize_text_index .. 145
sp_redo_text_events .. 146
sp_refresh_text_index .. 147
sp_show_text_online .. 148
sp_text_cluster ... 149
sp_text_configure ... 151
sp_text_dump_database .. 152
sp_text_kill .. 155
sp_text_load_index... 156
sp_text_notify ... 157
sp_text_online .. 158

APPENDIX B Sample Files .. 161
Default textsvr.cfg configuration file.. 161

viii Enhanced Full-Text Search Specialty Data Store

The sample_text_main.sql script .. 165
Sample files illustrating Enhanced Full-Text Search engine features .

166
Custom thesaurus.. 166
Topics .. 166
Clustering, summarization, and query-by-example 166

getsend sample program.. 167

APPENDIX C Unicode Support ... 169

Index.. 171

User’s Guide ix

About This Book

This book explains how to use the Enhanced Full-Text Search Specialty
Data Store product with Sybase® Adaptive Server® Enterprise.

This book describes the features and functionality of the enhanced version
which is a separately priced product.

Audience This book is for System Administrators who are configuring Adaptive
Server for a Enhanced Full-Text Search Specialty Data Store and for users
who are performing full-text searches on Adaptive Server data.

How to Use This Book This book includes these chapters:

• Chapter 1, “Introduction,” provides an overview of the Enhanced
Full-Text Search Specialty Data Store.

• Chapter 2, “Understanding the Enhanced Full-Text Search Engine,”
describes the components of the Enhanced Full-Text Search Specialty
Data Store and how it works.

• Chapter 3, “Configuring Adaptive Server for Full-Text Searches,”
describes how to configure Adaptive Server so that Enhanced Full-
Text Search Specialty Data Store can perform full-text searches on
the databases.

• Chapter 4, “Setting Up Verity Functions,” describes the setup you
need to do before you can issue full-text search queries.

• Chapter 5, “Writing Full-Text Search Queries,” describes the
components you use to write full-text search queries.

• Chapter 6, “System Administration,” provides information about
system administration issues.

• Chapter 7, “Performance and Tuning,” provides information about
performance and tuning issues.

• Chapter 8, “Verity Topics,” provides information about configuring
the Verity engine.

• Appendix A, “System Procedures,” describes Enhanced Full-Text
Search Specialty Data Store system procedures.

x Enhanced Full-Text Search Specialty Data Store

• Appendix B, “Sample Files,” contains the text of the textsvr.cfg file,
describes the sample files included with Enhanced Full-Text Search
Specialty Data Store, and discusses issues regarding the
sample_text_main.sql script.

• Appendix C, “Unicode Support,” describes how to configure Enhanced
Full Text Search Specialty Data Store to use Unicode.

Related documents The Sybase® Adaptive Server® Enterprise documentation set consists of the
following:

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

• ASE Replicator User’s Guide – describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
a primary server to one or more remote Adaptive Servers.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server User’s Guide – describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

 About This Book

User’s Guide xi

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• Job Scheduler User's Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Performance and Tuning Guide – is a series of four books that explains
how to tune Adaptive Server for maximum performance:

• Basics – the basics for understanding and investigating performance
questions in Adaptive Server.

• Locking – describes how the various locking schemas can be used for
improving performance in Adaptive Server.

• Optimizer and Abstract Plans – describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

• Monitoring and Analyzing – explains how statistics are obtained and
used for monitoring and optimizing performance.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book.

• Reference Manual – is a series of four books that contains the following
detailed Transact-SQL® information:

• Building Blocks – Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

• Commands – Transact-SQL commands.

• Procedures – Transact-SQL system procedures, catalog stored
procedures, system extended stored procedures, and dbcc stored
procedures.

• Tables – Transact-SQL system tables and dbcc tables.

xii Enhanced Full-Text Search Specialty Data Store

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Unified Agent and Agent Management Console – Describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services User’s Guide – explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

 About This Book

User’s Guide xiii

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

xiv Enhanced Full-Text Search Specialty Data Store

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBFs/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBFs/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBFs/Maintenance report, or click the
product description to download the software.

Conventions Directory paths For readability, directory paths in this manual are in UNIX
format. On Windows NT, substitute $SYBASE with %SYBASE% and replace
slashes (/) with backslashes (\). For example, replace this user input:

$SYBASE/$SYBASE_FTS/scripts

with:

 About This Book

User’s Guide xv

%SYBASE%\%SYBASE_FTS%\scripts

Formatting SQL statements SQL is a free-form language: there are no rules
about the number of words you can put on a line or where you must break a
line. However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a new line.
Clauses that have more than one part extend to additional lines, which are
indented.

SQL syntax conventions The conventions for syntax statements in this
manual are as follows:

Table 1: Syntax statement conventions

• Syntax statements (displaying the syntax and all options for a command)
are printed like this:

sp_dropdevice [device_name]

or, for a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase: normal font for keywords, italics for user-
supplied words.

Key Definition

command Command names, command option names, utility names, utility
flags, and other keywords are in

bold Courier

 in syntax statements and in bold Helvetica in paragraph text.

variable Variables, or words that stand for values that you fill in, are in
italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the options
shown.

, The comma means you may choose as many of the options
shown as you like, separating your choices with commas to be
typed as part of the command.

xvi Enhanced Full-Text Search Specialty Data Store

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer are printed like this:

pub_id pub_name city state
------- ------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Case In this manual, most of the examples are in lowercase. However, you
can disregard case when typing Transact-SQL keywords. For example,
SELECT, Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order.

Obligatory options {you must choose at least one} •Curly Braces and
Vertical Bars: Choose one and only one option.

{die_on_your_feet | live_on_your_knees | live_on_your_feet}

• Curly Braces and Commas: Choose one or more options. If you choose
more than one, separate your choices with commas.

{cash, check, credit}

Optional options [you do not have to choose any] •One Item in Square
Brackets: You don’t have to choose it.

[anchovies]

• Square Brackets and Vertical Bars: Choose none or only one.

[beans | rice | sweet_potatoes]

• Square Brackets and Commas: Choose none, one, or more than one
option. If you choose more than one, separate your choices with commas.

[extra_cheese, avocados, sour_cream]

Ellipsis: Do it again (and again)... An ellipsis (...) means that you can
repeat the last unit as many times as you like. In this syntax statement, buy is a
required keyword:

 About This Book

User’s Guide xvii

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a method
of payment: one of the items enclosed in square brackets. You may also choose
to buy additional things: as many of them as you like. For each thing you buy,
give its name, its price, and (optionally) a method of payment.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

This version of the Enhanced Specialty Data Store and the HTML
documentation have been tested for compliance with U.S. government Section
508 Accessibility requirements. Documents that comply with Section 508
generally also meet non-U.S. accessibility guidelines, such as the World Wide
Web Consortium (W3C) guidelines for Web sites.

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

xviii Enhanced Full-Text Search Specialty Data Store

User’s Guide 1

C H A P T E R 1 Introduction

Enhanced Full-Text Search Specialty Data Store (referred to in this book
as the Enhanced Full-Text Search engine) is an Open Server™ application
built on the Verity technology that is available in the Verity Developer’s
Kit. Adaptive Server connects to the Enhanced Full-Text Search engine
through Component Integration Services (CIS), allowing queries written
in the Verity query language to perform full-text searches on Adaptive
Server data.

This book describes the features and functionality of the Enhanced Full-
Text Search Specialty Data Store.

Capabilities of the Enhanced Full-Text Search Engine
The Enhanced Full-Text Search Specialty Data Store product performs
powerful, full-text searches on Adaptive Server data. In Adaptive Server,
without the Enhanced Full-Text Search engine, you can search text
columns only for data that matches what you specify in a select statement.
For example, if a table contains documents about dog breeds, and you
perform a search on the words “Saint Bernard,” the query produces only
the rows that include “Saint Bernard” in the text column.

With the Enhanced Full-Text Search engine, you can expand queries on
text columns to:

• Rank the results by order of how often a searched item appears in the
selected document. For example, you can obtain a list of document
titles that reference the words “Saint Bernard” five or more times.

Topic Page
Capabilities of the Enhanced Full-Text Search Engine 1

High availability 3

Capabilities of the Enhanced Full-Text Search Engine

2 Enhanced Full-Text Search Specialty Data Store

• Select documents in which the words you search for appear within n
number of words of each other. For example, you can search only for the
documents that include the words “Saint Bernard” and “Swiss Alps” and
that appear within 10 words of each other.

• Select documents that include all the search elements you specify within a
single paragraph or sentence. For example, you can query the documents
that include the words “Saint Bernard” in the same paragraph or sentence
as the words “Swiss Alps.”

• Select documents that contain one or more synonyms of the word you
specify. For example, you can select documents that discuss “dogs,” and it
returns documents that contain the words “dogs,” “canine,” “pooch,”
“pup,” and so on.

• Create your own custom thesaurus. For example, you can create a custom
thesaurus that includes “working dogs,” “St. Bernard,” “large dogs,” and
“European Breeds” as synonyms for “Saint Bernard.”

• Create topics that specify the search criteria for a query. For example, you
can create a topic that returns documents that include the phrase “Saint
Bernard” or “St. Bernard,” followed by documents that include the phrase
“working dogs,” “large dogs,” or “European Breeds.”

• Return documents grouped in clusters to give you a sense of the major
topics covered in the documents.

• Select a section of relevant text in a document and search for other, similar
documents.

• Index many different document types, such as Microsoft Word, and
FrameMaker.

• Sort documents using up to 16 sort orders.

• Integrate backup and restore capabilities.

• Change the value of a configuration parameter using a system procedure.

• Optimize indexes for text searches when your server is inactive, to
enhance performance.

• Create additional system management reports for viewing setup
information.

• Ability to bring databases online automatically for text searches.

CHAPTER 1 Introduction

User’s Guide 3

High availability
The Enhanced Full-Text Search product supports Sybase Failover. If an
Adaptive Server fails, the Enhanced Full-Text Search accepts connections
from the companion server. Additionally, if the Adaptive Server has proxy
database support enabled, then both the primary and companion servers can
use the Enhanced Full-Text Search at the same time.

Capabilities of the Enhanced Full-Text Search Engine

4 Enhanced Full-Text Search Specialty Data Store

User’s Guide 5

C H A P T E R 2 Understanding the Enhanced
Full-Text Search Engine

This chapter describes how an Enhanced Full-Text Search engine works.

Components of the Enhanced Full-Text Search engine
The Enhanced Full-Text Search engine uses the following components to
provide full-text search capabilities:

• Source table

• Verity collections (text index)

• Filters for a variety of document types

• text_db database

• Index table

• text_events table

The source table
The source table is a user table maintained by Adaptive Server. It contains
one or more columns using the date, time, text, image, char, varchar,
datetime, small datetime, bigint, int, smallint, tinyint, unsigned bigint,
unsigned int, unsigned smallint, or unitext datatype, which holds the data to
be searched. The source table must have an IDENTITY column or
primary key, which is used to join the source table with the id column of
an index table during text searches.

Topic Page
Components of the Enhanced Full-Text Search engine 5

How a full-text search works 10

Components of the Enhanced Full-Text Search engine

6 Enhanced Full-Text Search Specialty Data Store

The source table can be a local table, which holds the actual data, or it can be
a proxy table that is mapped to remote data using CIS.

The Verity collections
The Enhanced Full-Text Search engine uses the Verity collections, which are
located in $SYBASE/$SYBASE_FTS/collections. When you create the text
indexes, as described in “Creating the text index and index table” on page 20,
Verity creates a collection, which is a directory that implements a text index.
This collection is queried by the Enhanced Full-Text Search engine. For more
information about Verity collections, see the Verity Web site at
http://www.verity.com.

Filters
The text index uses a filter to strip out the tags in a document that are not ASCII
text. The Enhanced Full-Text Search engine provides filters for a variety of
document types (Microsoft Word, PDF, WordPerfect, SGML, and HTML).

The text_db database
During the installation of the Enhanced Full-Text Search engine, a database
named text_db is added to Adaptive Server using the installation script
installtextserver, as described in “Running the installtextserver script” on page
14. The database does not contain any user data, but contains two support
tables: vesaux and vesauxcol. These tables contain the metadata used by the
Enhanced Full-Text Search engine to maintain integrity between the Adaptive
Server source tables and the Verity collections.

When updating the collections after an insert, update, or delete is made to an
indexed column, the Enhanced Full-Text Search engine queries the vesaux and
vesauxcol tables. These tables determine which collections contain the
modified columns so that all affected collections are updated. The Enhanced
Full-Text Search engine also uses these tables when it is brought online, to
make sure that all necessary collections exist.

The vesaux table

The columns in the vesaux table are described in Table 2-1.

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine

User’s Guide 7

Table 2-1: Columns in the vesaux table

The vesauxcol table

The columns in the vesauxcol table are described in Table 2-2.

Table 2-2: Columns in the vesauxcol table

The index table
The index table provides a means of locating and searching documents stored
in the source table. The index table is maintained by the Enhanced Full-Text
Search engine and has an id column that maps to the IDENTITY column or
primary key of the corresponding source table. The IDENTITY or primary key
value from the row in the source table is stored with the data in the Verity
collections, which allows the source and index tables to be joined. Although
the index table is stored and maintained by the Enhanced Full-Text Search
engine, it functions as a proxy table to Adaptive Server through Component
Integration Services.

The index table contains special columns, called pseudo columns, that are used
by the Enhanced Full-Text Search engine to determine the parameters of the
search and the location of the text data in the source table. Pseudo columns
have no associated physical storage—the values of a pseudo column are valid
only for the duration of the query and are removed immediately after the query
finishes running.

Column name Description

id IDENTITY column

object_name Name of the source table on which the external index is being created

option_string Text index creation options

collection_id Name of the Verity collection

key_column Name of the IDENTITY column or primary key in the source table

svrid Server ID of the Enhanced Full-Text Search engine maintaining the collection

Column name Description

id ID of the referenced row in the vesaux table

col_name Name of the column for which you are searching

col_type Column type (date, time, text, image, char, varchar, datetime, smalldatetime; with
the Enhanced Full-Text Search engine, also int, smallint, and tinyint)

Components of the Enhanced Full-Text Search engine

8 Enhanced Full-Text Search Specialty Data Store

For example, when you use the score pseudo column in a query, to rank each
document according to how well the document matches the query, you may
have to use a score of 15 to find references to the phrase “small Saint Bernards”
in the text database. This phrase does not occur very often, and a low score
value broadens the search to include documents that have a small number of
occurrences of the search criteria. However, if you are searching for a phrase
that is common, like “large Saint Bernards,” you could use a score of 90, which
would limit the search to those documents that have many occurrences of the
search criteria.

You use the score column and the other pseudo columns, id, index_any, sort_by,
summary, and max_docs, to specify the parameters to include in your search.
For a description of the pseudo columns, see “Pseudo columns in the index
table” on page 44.

The text_events table
Each database containing tables for which there is a text index must contain an
events table, which logs inserts, updates, and deletes to indexed columns. The
name of this table is text_events. It is used to propagate updated data to the
Verity collections.

The columns in the text_events table are described in Table 2-3.

Table 2-3: Columns in the text_events table

Column name Description

event_id IDENTITY column

id ID of the row that was updated, inserted, or deleted

tableid Name of the table that contains the row that was updated, inserted, or deleted

columnid Name of the column on which the text index was created

event_date Date and time of the update, insert, or delete

event_type Type of update (update, insert, or delete)

event_status Indicates whether the update, insert, or delete has been propagated to the collections.

• 0 – Event Unread

• 1 – Event Read

• 2 – Event Succeeded

• 3 – Event Failed

srvid Server ID of the Enhanced Full-Text Search engine maintaining the collection

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine

User’s Guide 9

Relationships between the components
The relationships between the Enhanced Full-Text Search engine components
are shown in Figure 2-1.

Figure 2-1: Components of the Enhanced Full-Text Search engine

Enhanced Full-Text Search eng

collections

Verity collections. CIS

Adaptive Server

vesaux
The Enhanced Full-Text Search engine
connects to Adaptive
Server through an Open
Client connection.

text_db database for Enhanced Full-Text Search

Source table

text columns
contains the actual

vesauxcol

indexsource

Adaptive Server user database(s) containing
the text tables (for example, pubs2)

id id

engine metadata

maps Verity collections
to the Adaptive Server
index table

connects to Full-Text
Search engine
through CIS

text_eventstext_events table
logs changes to
indexed
columns

How a full-text search works

10 Enhanced Full-Text Search Specialty Data Store

How a full-text search works
To perform a full-text search, you enter a select statement that joins the
IDENTITY column or primary key from the source table with the id column of
the index table, using pseudo columns as needed to define the search. For
example, the following query searches for documents in the blurbs table of the
pubs2 database in which the word “Greek” appears near the word “Gustibus”
(the i_blurbs table is the index table):

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 20
and t1.max_docs = 10
and t1.index_any = "<near>(Greek, Gustibus)"

Adaptive Server and the Enhanced Full-Text Search engine split the query
processing, as follows:

1 The Enhanced Full-Text Search engine processes the query:

select t1.score, t1.id
from i_blurbs t1
where t1.score > 20
and t1.max_docs = 10
and t1.index_any = "<near>(Greek, Gustibus)"

The select statement includes the Verity operator near and the pseudo
columns score, max_docs, and index_any. The operator and pseudo
columns provide the parameters for the search on the Verity collections—
they narrow the result set from the entire copy column to the 10 documents
in which the words “Greek” and “Gustibus” appear closest to each other.

2 Adaptive Server processes the following select statement on the result set
that is returned by the Enhanced Full-Text Search engine in step 1:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id

This joins the blurbs and i_blurbs tables (the source table and the index
table, respectively) on the IDENTITY column or primary key of the blurbs
table and the id column of the i_blurbs table.

Figure 2-2 describes how Adaptive Server and the Enhanced Full-Text Search
engine process the query.

CHAPTER 2 Understanding the Enhanced Full-Text Search Engine

User’s Guide 11

Figure 2-2: Processing a full-text search query

Adaptive Server

id

1. Index query

i_blurbs
id

blurbs
id

collections

3. Results

Enhanced Full-Text Search engine

2. Verity query4. Adaptive Server query

5.

1. Adaptive Server sends the index query to the Enhanced Full-Text Search engine.
2. The EnhancedFull-Text Search engine processes the Verity operators in the query and

from the collections.
3. The Enhanced Full-Text Search engine returns the result set to Adaptive Server.
4. Adaptive Server processes the select statement on the local table.
5. Adaptive Server displays the results of the query.

produces a result set

How a full-text search works

12 Enhanced Full-Text Search Specialty Data Store

User’s Guide 13

C H A P T E R 3 Configuring Adaptive Server for
Full-Text Searches

This chapter describes how to configure Adaptive Server to perform full-
text searches.

Configuring Adaptive Server for an Enhanced Full-Text
Search engine

The Enhanced Full-Text Search engine is a remote server that Adaptive
Server connects to through Component Integration Services (CIS). Before
you can use the Enhanced Full-Text Search engine, you must configure
Adaptive Server for the Enhanced Full-Text Search engine as follows:

• Enable the enable cis, cis rpc handling and full-text search
configuration parameters if you have not done so. You need a license
to enable full-text search.

• Run the installtextserver script to define one or more Enhanced Full-
Text Search engines.

• Run the installmessages script to install messages for the Enhanced
Full-Text Search engine’s system procedures.

• Run the installevent script to create the text_events table in each user
database that will contain text indexes.

• Name the local server and restart.

Topic Page
Configuring Adaptive Server for an Enhanced Full-Text Search
engine

13

Creating and maintaining text indexes 19

Configuring Adaptive Server for an Enhanced Full-Text Search engine

14 Enhanced Full-Text Search Specialty Data Store

Enabling configuration parameters
To connect to the Enhanced Full-Text Search engine, Adaptive Server must be
running with the enable cis and cis rpc handling configuration parameters
enabled. If those parameters are not enabled, log in to Adaptive Server using
isql and use sp_configure to enable them. For example:

exec sp_configure "enable cis", 1
exec sp_configure "cis rpc handling", 1
exec sp_configure "enable full-text search", 1

If you have made changes to enable cis, messages display stating that you must
restart Adaptive Server for the new configuration parameter to take effect.

Running the installtextserver script
The installtextserver script:

• Defines the Enhanced Full-Text Search engine as a remote server of server
class sds to Adaptive Server.

• Creates a database for storing text index metadata. For more information
about this database, see “The text_db database” on page 6.

• Installs the system procedures required by the Enhanced Full-Text Search
engine.

Run the installtextserver script only once (see “Starting the installtextserver
script” on page 16). To add Enhanced Full-Text Search engines at a later time,
use sp_addserver. See “Configuring multiple Enhanced Full-Text Search
engines” on page 84 for more information about sp_addserver.

Note If you are putting the installtextserver script onto the model database,
you must increase the size of the model database to at least 3MB prior to
running the script.

All Enhanced Full-Text Search engines use the same database for storing text
index metadata. This database is referred to as the text_db database, the default
name.

For a list and description of the system procedures added with the
installtextserver script, see Appendix A, “System Procedures.”

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 15

Editing the installtextserver script

The installtextserver script is located in the $SYBASE/$SYBASE_FTS/scripts
directory. Use a text editor (such as vi or emacs) to open the script, and make
your edits. The edits you can make are as follows:

• Changing the name of the text_db database. If you use a different name,
replace all occurrences of text_db with the appropriate name.

Note If you change the name of the text_db database, you must also
change the name in the defaultDb configuration parameter (see
“Modifying the configuration parameters” on page 67).

• Changing the name of the Enhanced Full-Text Search engine. By default,
the installtextserver script defines a Enhanced Full-Text Search engine
named “textsvr.” If your Enhanced Full-Text Search engine is named
differently, edit this script so that it defines the correct server name.

• Adding multiple Enhanced Full-Text Search engines (for information on
how this can enhance performance, see “Configuring multiple Enhanced
Full-Text Search engines” on page 84). If you are initially defining more
than one Enhanced Full-Text Search engine, edit the installtextserver script
so that it includes all the Enhanced Full-Text Search engine definitions.
installtextserver includes the following section for naming the Enhanced
Full-Text Search engine you are configuring (“textsvr” by default):

/*
** Add the text server
*/
exec sp_addserver textsvr,sds,textsvr
go

Add an entry for each Enhanced Full-Text Search engine you are
configuring. For example, if you are configuring three Enhanced Full-Text
Search engines named KRAZYKAT, OFFICAPUP, and MOUSE, replace
the default “textsvr” line with the following lines:

exec sp_addserver KRAZYKAT, sds, KRAZYKAT
exec sp_addserver OFFICAPUP, sds, OFFICAPUP
exec sp_addserver MOUSE, sds, MOUSE
go

Configuring Adaptive Server for an Enhanced Full-Text Search engine

16 Enhanced Full-Text Search Specialty Data Store

• If you use OmniConnect to communicate with the Enhanced Full-Text
Search engine, change the server name specification in the
sp_addobjectdef calls for the vesaux and vesauxcol tables to a valid remote
server. For example, if your remote server is named REMOTE, change the
lines:

exec sp_addobjectdef
"vesaux","SYBASE.master.dbo.vesaux","table"
exec sp_addobjectdef
"vesauxcol","SYBASE.master.dbo.vesauxcol",
"table"

to:

exec sp_addobjectdef
"vesaux","REMOTE.master.dbo.vesaux","table"
exec sp_addobjectdef
"vesauxcol","REMOTE.master.dbo.vesauxcol",
"table"

Starting the installtextserver script

Use isql to run the installtextserver script. For example, to run the
installtextserver script in an Adaptive Server named MYSVR, enter:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installtextserver

Running the installmessages script
The Enhanced Full-Text Search engine has its own set of system procedure
messages that you must install in Adaptive Server. Use the installmessages
script to install the messages. You run the installmessages script only once,
even if you have multiple Enhanced Full-Text Search engines.

For example, to run the installmessages script in a server named MYSVR,
enter:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installmessages

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 17

Running the installevent script
Each database containing tables referenced by a text index must contain a
text_events table, which logs inserts, updates, and deletes to indexed columns.
It is used to propagate updated data to the Verity collections.

Run the installevent script, as described below, to create the text_events table
and associated system procedures in a database. Use the installevent script as
follows:

• If all databases require text indexes, run the installevent script to create a
text_events table in the model database. Each newly created database will
then have a text_events table. To add a text_events table to existing
databases, edit the script as described below to create the text_events table
in the existing user database.

• If not all databases have text indexes, use the installevent script as a
sample. For each existing database and each new database that includes
tables that require text indexing, run the installevent script. You must edit
the script as described below, to create the text_events table in the correct
user database.

Note If a text_events table does not exist in a database that includes source
tables that require text indexing, changes to the source table are not
propagated to the Verity collections.

Editing the installevent script

The installevent script is located in the $SYBASE/$SYBASE_FTS/scripts
directory. Use a text editor (such as vi or emacs) to open the script, and make
the edits. The edits you can make are:

• Changing the user database name. The installevent script creates an events
table (named text_events) and associated system procedures in the model
database. The model database is the default database. To install the
text_events table in an existing user database, edit the script and replace all
references to model with the user database name.

Configuring Adaptive Server for an Enhanced Full-Text Search engine

18 Enhanced Full-Text Search Specialty Data Store

• Changing the text_db database name. If your database for storing text
index metadata is named something other than text_db, replace all
references to text_db with the appropriate name.

Note The name of the text_db database must be the same as the name in
the defaultDb configuration parameter (see “Modifying the configuration
parameters” on page 67).

Running the installevent script

Using isql, run the installevent script to install the text_events table and related
system procedures in Adaptive Server. For example, to run the installevent
script in a server named MYSVR, enter:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installevent

Note The text_db database must exist before you run the installevent script. If
it does not exist, run the installtextserver script first.

Note Before installing the EFTS-12_5 scripts on 64-bit
platforms(installtextserver, installevents, installmessages) increase the size of
the tempdb and the model databases from the default size to 3MB each.

Naming the local Adaptive Server
When using the Enhanced Full-Text Search engine with Adaptive Server 12.5
and later, you must name the local Adaptive Server using sp_addserver
<servername>, local. After issuing sp_addserver, you must restart the local
Adaptive Server. Do not install any system stored procedures in the model
database. They should be installed in sybsystemprocs.

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 19

Creating and maintaining text indexes
Before the Enhanced Full-Text Search engine can process full-text searches,
you must create text indexes for the source tables in the user database. After the
text indexes are created, you must update them when the source data changes
to keep the text indexes current. To create and maintain the text indexes:

1 Set up the source table for indexing (see “Setting up source tables for
indexing” on page 19).

2 Create the text indexes and index tables (see “Creating the text index and
index table” on page 20).

3 Bring the databases online for full-text searches (see “Bringing the
database online for full-text searches” on page 22).

4 Propagate changes in the user data to the text indexes (see “Propagating
changes to the text index” on page 23).

5 If you are replicating text indexes, set up text indexing in the destination
database (see “Replicating text indexes” on page 23).

For an example of setting up a text index, see the sample script
sample_text_main.sql in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Setting up source tables for indexing
The source table contains the data on which you perform searches (for
example, the blurbs table in the pubs2 database). For more information, see
“The source table” on page 5.

Before you can create text indexes on a source table, you must:

• Verify that the source table has an IDENTITY column or primary key. If
not, alter the table and add an IDENTITY column.

• Create a unique index on the primary key or IDENTITY column
(optional).

Creating and maintaining text indexes

20 Enhanced Full-Text Search Specialty Data Store

Every source table must contain an IDENTITY column or primary key to
uniquely identify each row and provide a means of joining the index table and
the source table. When you create a text index, the IDENTITY column or
primary key is passed with the indexed columns to the Enhanced Full-Text
Search engine. The IDENTITY column or primary key value is stored in the
text index and is mapped to the id column in the index table. If a table does not
have a primary key an IDENTITY column can be added to the table.

Adding an IDENTITY column to a source table

To create an IDENTITY column in a table named composers, define the table
as follows:

create table composers (
id numeric(m,n) identity,
comp_fname char(30) not null,
comp_lname char(30) not null,
text_col text

)

where m =< 38 and n always = 0.

To add an IDENTITY column to an existing table, enter:

alter table table_name add id numeric(10,0) identity

Adding a unique index to an IDENTITY column

For optimum performance, Sybase recommends that you create a unique index
on the IDENTITY column. For example, to create a unique index named
comp_id on the IDENTITY column created above, enter:

create unique index comp_id
on composers(id)

For more information about creating a unique index, see Chapter 11, “Creating
Indexes on Tables,” in the Transact-SQL User’s Guide.

Creating the text index and index table
Use sp_create_text_index to create text indexes. sp_create_text_index:

• Updates the vesaux and vesauxcol tables in the text_db database

• Creates the text index (Verity collections)

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 21

• Populates the Verity collections

• Creates the index table in the user database where the source table is
located

Note The Enhance Full-Text Search engine must be running to successfully
execute sp_create_text_index. For information on starting and stopping the
Enhanced Full-Text Search engine, see Chapter 6, “System Administration.”

The text index can contain up to 16 columns. Columns of the following
datatypes can be indexed: char, varchar, nchar, nvarchar, date, time, text, image,
datetime, smalldatetime, int, smallint, tinyint, unichar, and univarchar.

For example, to create a text index and an index table named i_blurbs for the
copy column in the blurbs table in pubs2 on KRAZYKAT, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ", "copy"

where:

• KRAZYKAT is the name of the Enhanced Full-Text Search engine.

• i_blurbs is the name of the index table and text index you are creating.

• blurbs is the source table on which you are creating the text indexes.

• " " is a placeholder for text index creation options.

• copy is the column in the blurbs table that you are indexing.

See sp_create_text_index on page 142 for more information.

Note Make sure the text_db database name in the configuration file (listed after
the defaultDb parameter) matches the database name in Adaptive Server. If they
do not match, the text index cannot be created. Also, verify that the text_events
table exists in the user database. If it does not exist, run the installevent script
for that database (see to “Running the installevent script” on page 17).

Populating the Verity collections can take a few minutes or several hours,
depending on the amount of data you are indexing. You may want to perform
this step when the server is not being heavily used. Increasing the batch_size
configuration parameter also expedites the process. See “batch_size” on page
82 for more information.

Note Do not rename an index; the Verity collection will not be renamed.

Creating and maintaining text indexes

22 Enhanced Full-Text Search Specialty Data Store

Specifying multiple columns when creating a text index

When you create a text index on two or more columns, each column in the text
index is placed into its own document zone. The name of the zone is the name
of the column. For example, to create a text index and an index table named
i_blurbs for both the copy column and the au_id column in the blurbs table in
pubs2 on KRAZYKAT, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", " ", "copy", "au_id"

sp_create_text_index creates two zones in the text index named “copy” and
“au_id.” When you issue a query against the i_blurbs text index, the search
includes the copy and au_id columns. However, you can limit your search to a
particular column by using the in operator to specify a document zone (for more
information, see “in” on page 53).

Bringing the database online for full-text searches
With the Enhanced Full-Text Search engine, the database is automatically
brought online when the auto_online configuration parameter is set to 1.

When you bring a database online, the Enhanced Full-Text Search engine
initializes the internal Verity structures and confirms that the Verity collections
exist.

Use sp_text_online to bring a database online for full-text searches if it is not
automatically brought online. For example, to bring the pubs2 database online
before issuing full-text searches on the blurbs table in a Enhanced Full-Text
Search engine named KRAZYKAT, enter:

sp_text_online KRAZYKAT, pubs2

This message appears:

Database ‘pubs2’ is now online

The pubs2 database is now available for performing full-text searches.

See sp_text_online on page 158 for more information.

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 23

Propagating changes to the text index
When you insert, update, or delete data in your source table, the text indexes
are not updated automatically. After you update data, run sp_refresh_text_index
to log the changes to the text_events table. Then, run sp_text_notify to notify the
Enhanced Full-Text Search engine that changes need to be processed. The
Enhanced Full-Text Search engine then connects to Adaptive Server, reads the
entries in the text_events table, determines which indexes, tables, and rows are
affected, and updates the appropriate collections.

See sp_refresh_text_index on page 147 and sp_text_notify on page 157 for
more information on these system procedures.

To have sp_refresh_text_index run automatically after each insert, update, or
delete, you can create triggers on your source tables, as follows:

• Create a trigger that runs sp_refresh_text_index after a delete operation.

• Create a trigger that runs sp_refresh_text_index after an insert operation.

• Create a trigger that runs sp_refresh_text_index after an update operation
to an indexed column.

Triggers are not fired when you use writetext to update a text column. To have
sp_refresh_text_index automatically run after a writetext:

• Set up a non-text column and update that column after each writetext.

• Create a trigger on the non-text column to run sp_refresh_text_index. Since
the Enhanced Full-Text Search engine reinserts the entire row when you
issue sp_text_notify, the update to the text column gets propagated to the
text index.

For examples of each of these triggers, see the sample script
sample_text_main.sql in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Replicating text indexes
To replicate tables that have text indexes, follow these guidelines:

• Create the table definition in the destination database.

• Run the installevent script to create the text_events table in the destination
database, if the text_events table does not already exist (see “Running the
installevent script” on page 17).

Creating and maintaining text indexes

24 Enhanced Full-Text Search Specialty Data Store

• Run sp_create_text_index to create the text index on the empty table in the
destination database (see “Creating the text index and index table” on
page 20).

• Create triggers for running sp_create_text_index to insert entries into the
text_events table whenever you insert, update, or delete data into the table
(see “Propagating changes to the text index” on page 23).

• Create the replication definition in the Replication Server. This replicates
all the data in the source table to the destination table. See the Replication
Server Administration Guide for more details.

• Run sp_text_notify to update the text index; run sp_text_notify periodically
to process changes to the destination table (see “Propagating changes to
the text index” on page 23).

Note You must issue an update against a non-text column whenever a
writetext command is performed. This ensures that the trigger that inserts
data into the text_events table is fired.

Example: enabling a new database for text searches
This example describes the steps for creating a text index on the plot column of
the reviews table in the movies database. This process assumes that:

• You have created a reviews table in a new database named movies on the
MYSVR server

• The reviews table has a column named plot that you are going to index

• Adaptive Server and the Enhanced Full-Text Search engine named
MYTXTSVR have been configured to connect to each other

Step 1. Verifing that the text_events table exists

Each database containing tables referenced by a text index must contain a
text_events table, which logs inserts, updates, and deletes to indexed columns.

If a text_events table is in your model database, it will be in all new databases.
If a text_events table is not in your model database, run the installevent script to
install the text_events table in the new database. For example, to install the
text_events table in the movies database:

• Save the installevent script as installeventmovies.

CHAPTER 3 Configuring Adaptive Server for Full-Text Searches

User’s Guide 25

• Edit the script to replace all references to the word model with the word
movies.

• Run the script as follows:

isql -Usa -P -SMYSVR -i
$SYBASE/$SYBASE_FTS/scripts/installeventmovies

See “Running the installevent script” on page 17 for information on installing
the text_events table.

Step 2. Checking for an IDENTITY column or primary key

Every source table must contain an IDENTITY column or primary key, which
uniquely identifies each row and provides a means of joining the index table
and the source table.

For example, to add an IDENTITY column to the reviews table, enter:

alter table reviews add id numeric(10,0) identity

See “Adding an IDENTITY column to a source table” on page 20 for more
information.

Step 3. Creating a unique index on the IDENTITY column

This step is optional. To enhance performance, Sybase recommends that you
create a unique index that contains only the IDENTITY column. For example,
to create a unique index named reviews_id on the IDENTITY column created
in the previous procedure, issue:

create unique index reviews_id on reviews(id)

For more information about creating a unique index, see Chapter 11, “Creating
Indexes on Tables,” ofthe Transact-SQL User’s Guide.

Step 4. Creating the text index and index table

The source tables in the user database must be indexed so that you can perform
full-text searches. For example, to create a text index and an index table named
reviews_idx for the plot column in the reviews table, enter:

sp_create_text_index "MYTXTSVR", "reviews_idx",
"reviews", " ", "plot"

The reviews table is now available for running full-text searches.

See sp_create_text_index on page 142 for more information.

Creating and maintaining text indexes

26 Enhanced Full-Text Search Specialty Data Store

Step 5. Bringing the database online for a full-text search

To bring the movies database online for the Enhanced Full-Text Search engine
named MYTXTSVR, enter:

sp_text_online MYTXTSVR, movies

Note Omit this step if you have auto_online set to “1”.

See sp_text_online on page 158 for more information.

Indexing the euro symbol
The euro symbol can be indexed and returned properly if the following
configuration guidelines are followed. Adaptive Server must have the utf8
charset installed. Enhanced Full-Text Search must have the vdkLanguage set
to <language>x and the vdkCharset left blank. For example:

ASE 12.5.x charset = utf8
EFTS 12.5.x vdkLanguage = englishx
EFTS 12.5.x vdkCharset =

User’s Guide 27

C H A P T E R 4 Setting Up Verity Functions

This chapter describes the setup required before you can write queries
with certain Verity functionality.

Enabling query-by-example, summarization, and
clustering

The style.prm file specifies additional data to include in the text indexes
to support the following functionality:

• Query-by-example – retrieves documents that are similar to a phrase
(see “like” on page 54 for more information).

Note The text indexes need additional data to support phrases in the
query-by-example specification of the like operator. If you use a
document in the query-by-example specification, additional data is
not required.

• Summarization – returns summaries of documents rather than entire
documents (see “Using the summary column to summarize
documents” on page 47 for more information).

• Clustering – groups documents in result sets by subtopic. See “Using
pseudo columns to request clustered result sets” on page 48 for more
information.

Topic Page
Enabling query-by-example, summarization, and clustering 27

Setting up a column to use as a sort specification 30

Using filters on text that contains tags 32

Creating a custom thesaurus 34

Creating topics 38

Enabling query-by-example, summarization, and clustering

28 Enhanced Full-Text Search Specialty Data Store

You can enable these features for all text indexes by editing the master
style.prm file, or you can enable them for an individual text index by editing its
style.prm file. Both methods are described below.

Query-by-example
and clustering

To use phrases in a query-by-example specification and to use clustering, you
must enable the generation of document feature vectors at indexing time. To do
this, uncomment the following line in the style.prm file:

$define DOC-FEATURES "TF"

Summarization To configure the Enhanced Full-Text Search engine for summarization,
uncomment one of the following lines that starts with “#$define” in the
style.prm file:

The example below stores the best three sentences of
the document, but not more than 255 bytes.
#$define DOC-SUMMARIES "XS MaxSents 3 MaxBytes 255"
The example below stores the first four sentences of
the document, but not more than 255 bytes.
#$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 255"
The example below stores the first 150 bytes of
the document, with whitespace compressed.
#$define DOC-SUMMARIES "LB MaxBytes 150"

Each of those lines reflects a different level of summarization. You can specify
how many bytes of data you want the Enhanced Full-Text Search engine to
display, by altering the numbers at the ends of these lines. For example, if you
want only the first 233 bytes of data summarized, edit the script to read:

$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 233"

The maximum number of bytes displayed is 255. Any number greater than that
is truncated to 255.

Editing the master style.prm file

Note The location of the master style.prm file was moved starting with the
EFTS 12.5.2 release. Edits made to the style.prm file located in
$SYBASE/$SYBASE_FTS/verity/common/styles/txtsvr will be ignored. The
new location is specified below.

CHAPTER 4 Setting Up Verity Functions

User’s Guide 29

The master style.prm file is located in
$SYBASE/$SYBASE_FTS/verity/common/style. It contains the default
Enhanced Full-Text Search engine style parameters. Edit this file to configure
the Enhanced Full-Text Search engine so that all tables on which you create
text indexes allow clustering and literal text in your query-by-example
specifications, or summarization. Uncomment the applicable lines as described
above.

Note If you have existing text indexes, you must re-create the text index with
these features enabled as described in “Editing individual style.prm files” on
page 29.

Editing individual style.prm files
Perform the following steps to configure the Enhanced Full-Text Search engine
so that the individual text index allows clustering and literal text in your query-
by-example specifications, or summarization:

1 Create the text index using sp_create_text_index. Use the word “empty” in
the option_string parameter so that the style.prm file is created for the text
index, but the Verity collections are not populated with data. For example,
if you are enabling clustering for the copy column of the blurbs table, use
the following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "empty", "copy"

Note If the text index already exists, omit this step. You do not need to
create the text index again.

2 Use sp_drop_text_index to drop the text index associated with the
style.prm file you are editing.

For example, to drop the text index created in step 1, enter:

sp_drop_text_index "blurbs.i_blurbs"

3 Edit the style.prm file that exists for the text index. The style.prm file for
an existing collection is located in
$SYBASE/$SYBASE_FTS/collections/db.owner.index/style.

Setting up a column to use as a sort specification

30 Enhanced Full-Text Search Specialty Data Store

where db.owner.index is the database, the database owner, and the index
created with sp_create_text_index. For example, if you create a text index
called i_blurbs on the pubs2 database, the full path to these files is
$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

4 Uncomment the applicable lines as described above.

For example, to enable clustering, uncomment the following line:

$define DOC-FEATURES "TF"

5 Re-create the text index you dropped in step 2. For example, to re-create
the i_blurbs text index, enter:

sp_create_text_index "KRAZYKAT", "i_blurbs",
"blurbs", "", "copy"

Setting up a column to use as a sort specification
Before you can sort by specific columns, you must modify the style.vgw and
style.ufl files. (For information on including a column in a sort specification,
see “Using the sort_by column to specify a sort order” on page 46.) Both files
are in $SYBASE/$SYBASE_FTS/collections/db.owner.index/style.

where db.owner.index is the database, the database owner, and the index
created using sp_create_text_index. For example, if you created a text index
called i_blurbs on the pubs2 database, the full path to those files would be:

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

To edit the style.vgw and style.ufl files, follow these steps:

1 Drop the text index that contains the columns for which you are adding
definitions. Dropping the text index does not drop the collection directory.

For example, to add definitions for the copy column in the blurbs table, use
the following command to drop the text index:

sp_drop_text_index i_blurbs

2 Edit the style.vgw file. Following this line:

dda "SybaseTextServer"

add an entry for the column you are defining. The syntax is:

table: DOCUMENTS
{

CHAPTER 4 Setting Up Verity Functions

User’s Guide 31

copy: fcolumn_number copy_column_number
}

where column_number is the number of the column you are defining.
Column numbers start with 0; if you want the first column to be sorted,
specify “f0”; to sort the second column, specify “f1”; to sort the third
column, specify “f2”, and so on.

For example, to define the first column in a table, the syntax is:

table: DOCUMENTS
{

copy: f0 copy_f0
}

Then, your style.vgw file will be similar to this:

#
Sybase Text Server Gateway
#
$control: 1
gateway:
{

dda: "SybaseTextServer"
{

copy: f0 copy_f0
}
}

3 Edit the style.ufl file by adding the column definition for a data table
named fts. The syntax is:

data-table: fts
{

fixwidth: copy_fcolumn_number precision datatype
}

Column numbers start with 0; if you want the first column to be sorted,
specify “f0”; to sort the second column, specify “f1”; to sort the third
column, specify “f2”, and so on. For example, to add a definition for the
first column of a table, with a precision of 4, and a datatype of date, enter:

data-table: fts
{

fixwidth: copy_f0 4 date
}

Similarly, to add a definition for the second column of a table with a
precision of 10, and a datatype of character, enter:

Using filters on text that contains tags

32 Enhanced Full-Text Search Specialty Data Store

data-table: fts
{

fixwidth: copy_f1 10 text
}

4 Re-create the index, using sp_create_text_index.

Using filters on text that contains tags
To perform accurate searches on documents that contain tags (such as HTML
or Post Script), the text index must use a filter to strip out the tags. The
Enhanced Full-Text Search engine provides filters for a variety of document
types (Microsoft Word, FrameMaker, WordPerfect, SGML, HTML, and
others).

When you create the text index to use a filter, the data for each type of tag in
the document is placed into its own document zone. For example, if you have
a tag called “chapter,” all chapter names are placed into one document zone.
You can issue a query that searches the entire document, or that searches only
for data in the “chapter” zone (for more information, see “in” on page 53).

To create a text index that uses a filter, modify the style.dft file for that text
index:

1 Create the text index using sp_create_text_index. Use the word “empty” in
the option_string parameter so that the style.dft file is created for the text
index, but the Verity collections are not populated with data. For example,
to create a text index for the copy column of the blurbs table, use the
following syntax:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "empty", "copy"

2 Drop the text index that you create in step 1. This drops the text index, but
not the style.dft file. For example, use the following command to drop the
i_blurbs text index:

sp_drop_text_index i_blurbs

3 Edit the style.dft file. The style.dft file is in the
directory$SYBASE/$SYBASE_FTS/collections/db.owner.index/style,
where db.owner.index is the database, the database owner, and the index
created using sp_create_text_index. For example, if you created a text
index called i_blurbs on the pubs2 database, the full path to the style.dft file
would be:

CHAPTER 4 Setting Up Verity Functions

User’s Guide 33

$SYBASE/$SYBASE_FTS/collections/pubs2.dbo.i_blurbs/style

Following this line:

field: f0

add syntax to use a filter:

• For SGML documents, use:

/filter="zone -nocharmap"

• For HTML documents, use:

/filter="zone -html -nocharmap"

Use the following syntax for all document types:

/filter="universal"

For example, your style.dft file for an SGML document will look like this:

$control: 1
dft:
{

field: f0
/filter="zone -nocharmap"

field: f1
field: f2
.
.
field: f15

{

Your style.dft file for an SGML document will look like this:

$control: 1
dft:
{

field: f0
/filter="universal"

field: f1
field: f2
.
.
field: f15

Creating a custom thesaurus

34 Enhanced Full-Text Search Specialty Data Store

{

Note Use getsend to load the database with document data. getsend takes
the following arguments: database, table, column and row id. Insert a null
value for the rowid for each row of text you want to insert. getsend must
insert into an image column for filtering to work. For more information on
getsend, refer to the README.TXT file and getsend.c file in
$SYBASE/$SYBASE_FTS/sample/source directory.

4 Re-create the index, using sp_create_text_index. For example:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

Creating a custom thesaurus
The Verity thesaurus operator expands a search to include the specified word
and its synonyms (for information on using the thesaurus operator, see
“thesaurus” on page 57). You can create a custom thesaurus that contains
application-specific synonyms to use in place of the default thesaurus.

For example, the default English language thesaurus contains these words as
synonyms for “money:” “cash,” “currency,” “lucre,” “wampum,” and
“greenbacks.” You can create a custom thesaurus that contains a different set
of synonyms for “money,” such as: ”bid,” “tokens,” “credit,” “asset,” and
“verbal offer.”

To create a custom thesaurus:

1 Make a list of the synonyms that you will use with your application. It may
help to examine the default thesaurus (see “Examining the default
thesaurus (optional)” on page 35).

2 Create a control file that contains the synonyms you are defining for your
custom thesaurus (see “Creating the control file” on page 35).

3 Create the custom thesaurus using the mksyd utility (see “Creating the
thesaurus” on page 37). The mksyd utility is located in
$SYBASE/$SYBASE_FTS/verity/<verity_platform_directory>/bin.

This uses the control file as input.

4 Replace the default thesaurus with your custom thesaurus (see “Replacing
the default thesaurus with the custom thesaurus” on page 37).

CHAPTER 4 Setting Up Verity Functions

User’s Guide 35

For more information on “Custom Thesaurus Support” and the mksyd utility,
see the Verity Web site at http://www.verity.com.

Two sample files illustrate how to set up and use a custom thesaurus:

• sample_text_thesaurus.ctl is a sample control file.

• sample_text_thesaurus.sql issues queries against the custom thesaurus
defined in the sample control file.

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts directory.

Examining the default thesaurus (optional)
A control file contains all the synonym definitions for a thesaurus. To examine
the default thesaurus, create its control file using the mksyd utility. The mksyd
utility is located in $SYBASE/SYBASE_FTS/verity/<verity_platform_
directory>/bin.

Use the syntax:

mksyd -dump -syd
$SYBASE/$SYBASE_FTS/verity/common/vdkLanguage/vdk20
.syd -f work_location/control_file.ctl

where:

• vdkLanguage – is the value of the vdkLanguage configuration parameter
(for example, “english”).

• work_location – is the directory where you want to place the control file.

• control_file – is the name of the control file you are creating from the
default thesaurus.

To view the default synonym lists, examine the control file (control_file.ctl)
that is created.

Creating the control file
Create a control file that contains the new synonyms for your custom thesaurus.
The control file is an ASCII text file in a structured format. Using a text editor
(such as vi or emacs), either:

Creating a custom thesaurus

36 Enhanced Full-Text Search Specialty Data Store

• Edit the control file from the default thesaurus and add new synonyms to
the existing thesaurus (see “Examining the default thesaurus (optional)”
on page 35), or

• Create a new control file that includes only your synonyms.

Control file syntax

The control file contains synonym list definitions in a synonyms: statement. For
example, the following is a control file named colors.ctl:

$control: 1
synonyms:
{
list: "red, ruby, scarlet, fuchsia,\
magenta"
list: "electric blue <or> azure"
/keys = "lapis"
}
$$

The synonyms: statement includes:

• list: keywords that specify the start of a synonym list. The synonyms in the
list are either in query form or in a list of words or phrases separated by
commas.

• Each list: can optionally have a /keys modifier that specifies one or more
keys separated by commas. In the example above, no keys are specified in
the first “list.” This means the list is found when the thesaurus is queried
for the word “red,” “ruby,” “scarlet,” “fuchsia,” or “magenta.” The second
“list” uses the /keys modifier to specify one key. This means the words or
phrases in the list satisfy a query only when you specify <thesaurus>lapis.

Note If you use emacs to build a synonym list and any of your lists are
longer than one line, turn off auto-fill mode. If you separate your list into
multiple lines, include a backslash (\) at the end of each line so that the
lines are treated as one list.

For more complex examples of control files, see the Verity Web site.

CHAPTER 4 Setting Up Verity Functions

User’s Guide 37

Creating the thesaurus
The mksyd utility creates the custom thesaurus using a control file as input. It
is located in:

$SYBASE/$SYBASE_FTS/verity/<verity_platform_directory>/bin

Run, or define an alias to run, mksyd from this bin directory. Create your
custom thesaurus in any work directory.

The mksyd syntax for creating a custom thesaurus is:

 mksyd -f control_file.ctl -syd custom_thesaurus.syd

where:

• control_file – is the name of the control file you created in the previous
section.

• custom_thesaurus – is the name of the custom thesaurus you are creating.

For example, to execute the mksyd utility reading the sample control file
defined above, and directing output to a work directory, use:

mksyd -f /usr/u/sybase/dba/thesaurus/colors.ctl
-syd /usr/u/sybase/dba/thesaurus/custom.syd

Replacing the default thesaurus with the custom thesaurus
The default thesaurus named vdk20.syd is located in
$SYBASE/$SYBASE_FTS/verity/common/vdkLanguage, where vdkLanguage
is the value of the vdkLanguage configuration parameter (for example, the
English directory is $SYBASE/$SYBASE_FTS/verity/common/english). Each
application and user reading from this location at runtime uses this thesaurus.
To replace it with your custom thesaurus:

1 Back up the default thesaurus before replacing it with the custom
thesaurus. For example:

mv /$SYBASE/$SYBASE_FTS/verity/common/english/vdk20.syd default.syd

2 Replace the vdk20.syd file with your custom thesaurus. For example:

cp custom.syd /$SYBASE/$SYBASE_FTS/verity/common/english/vdk20.syd

3 Restart your Examine the control file (control_file.ctl); no configuration
file changes are required. The thesaurus is read from this location when the
Examine the control file (control_file.ctl) is started, not when a query is
executed.

Creating topics

38 Enhanced Full-Text Search Specialty Data Store

Queries using the thesaurus operator will now use the custom thesaurus.

Creating topics
This section provides a condensed overview of Verity topics. Topics are
discussed in detail in Chapter 8, “Verity Topics.”

A topic is a grouping of information related to a concept or subject area. With
topic definitions in place, a user can perform searches on the topic instead of
having to write queries with complex syntax.

The user creates topics, which can be combinations of words and phrases,
Verity operators and modifiers, and weight values. Then, any user can query
the topic.

Before you create topics, determine your application requirements, and
establish standards for naming conventions and for the location of the
following:

• Outline files – contains the topic definitions. Each topic has its own outline
file.

• Topic set directories – contains the compiled topic. Each topic has its own
topic set directory.

• Knowledge base map file – contains pointers to the topic set directories.

To implement topics, perform the following steps:

1 Create one or more outline input files to define your topics (see “Creating
an outline file” on page 39). Each outline file is used to populate one topic
set.

2 Create and populate a topic set directory, using the mktopics utility (see
“Creating a topic set directory” on page 40). The mktopics utility is located
in $SYBASE/$SYBASE_FTS/verity/<verity_platform_directory>/bin.

Each topic set directory is populated based on one topic outline input file.

3 Create a knowledge base map, specifying the locations of one or more
topic set directories (see “Creating a knowledge base map” on page 40).

4 Set the knowledge_base configuration parameter to point to the location of
the knowledge base map (see “Defining the location of the knowledge
base map” on page 41).

CHAPTER 4 Setting Up Verity Functions

User’s Guide 39

5 Execute queries against defined topics.

The following sample files illustrate the topics feature:

• sample_text_topics.otl is a sample outline file.

• sample_text_topics.kbm is a sample knowledge base map.

• sample_text_topics.sql issues queries using defined topics.

These files are in the $SYBASE/$SYBASE_FTS/sample/scripts directory.

Creating an outline file
A topic outline file specifies all the combinations of words and phrases, Verity
operators and modifiers, and weight values that the search engine uses when
you issue a query using the topic. The outline file is an ASCII text file in a
structured format.

For example, the following outline file defines the topic “saint-bernard”:

$control: 1
saint-bernard <accrue>
*0.80 "Saint Bernard"
*0.80 "St. Bernard"
* "working dogs"
* "large dogs"
* "European breeds"
$$

When you issue a query specifying the topic “saint-bernard”, the Enhanced
Full-Text Search engine:

• Returns documents that contain one or more of the following phrases:
“Saint Bernard,” “St. Bernard,” “working dogs,” “large dogs,” and
“European breeds”

• Scores documents that contain the phrase “Saint Bernard” or “St. Bernard”
higher than documents that contain the phrase “working dogs, “large
dogs,” or “European breeds”

This example is a very basic topic definition. An outline can introduce more
complex relationships by using:

• Multiple levels of subtopics

• Combinations of Verity operators (this example uses accrue)

Creating topics

40 Enhanced Full-Text Search Specialty Data Store

• Verity modifiers

Note In Windows NT, you can use the graphical user interface of the
Verity Intelligent Classifier product, which is available from Verity, to
create topic outlines. If you use Intelligent Classifier, it automatically
creates a topic set directory, and you can go to “Creating a knowledge base
map” on page 40 to continue setting up your topics.

Creating a topic set directory
Use the mktopics utility to create and populate a topic set directory. It is located
in $SYBASE/$SYBASE_FTS/verity/<verity_platform_directory>/bin.

Run, or define an alias to run, mktopics from this bin directory. You can create
a topic set directory or directories in any work directory.

The mktopics syntax is:

mktopics -outline outline_file.otl -topicset topic_set_directory

where:

• outline_file – is the name of the outline file you created in “Creating an
outline file” on page 39

• topic_set_directory – is the name of the topic set directory you are
creating.

For example, to execute the mktopics utility reading the saint-bernard.otl file
defined above, and directing output to a work directory, use the syntax:

mktopics -outline
/usr/u/sybase/topic_outlines/saint-bernard.otl
-topicset /usr/u/sybase/topic_sets/
saint-bernard_topic

Creating a knowledge base map
A knowledge base map specifies the locations of one or more topic set
directories. Create an ASCII knowledge base map file that defines the fully-
qualified directory paths to your topic sets.

CHAPTER 4 Setting Up Verity Functions

User’s Guide 41

For example, the following knowledge base map file illustrates how you can
list multiple knowledge bases in the map. The first entry identifies the topic set
directory created with mktopics above.

$control:1
kbases:
{
kb:
/kb-path = /usr/u/sybase/topic_sets/saint-bernard_topic
kb:
/kb-path = /usr/u/sybase/topic_sets/another_topic
}

Defining the location of the knowledge base map
Set the knowledge_base configuration parameter to point to the location of the
knowledge base map. For example:

sp_text_configure KRAZYKAT, ’knowledge_base’,
’/usr/u/sybase/topic_sets/sample_text_topics.kbm’

The knowledge_base configuration parameter is static; you must restart the
Enhanced Full-Text Search engine for the definition to take effect.

Executing queries against defined topics
You can now execute queries using the defined topic instead of a complex
query. For example, before you create the “saint-bernard” topic, you would
have to use the following syntax:

...where i.index_any = "<accrue> ([80]Saint Bernard, [80]St. Bernard, working
dogs, large dogs, European breeds)"

to find documents that:

• Contain one or more of the following phrases: “Saint Bernard,” “St.
Bernard,” “working dogs,” “large dogs,” and “European breeds”

• Score documents containing the phrase “Saint Bernard” or “St. Bernard”
higher than documents containing the phrase “working dogs,” “large
dogs,” or “European breeds”

After you create the topic “saint-bernard”, you can use this syntax:

...where i.index_any = "<topic>saint-bernard"

Creating topics

42 Enhanced Full-Text Search Specialty Data Store

or:

...where i.index_any = "saint bernard"

Note If you enter a word in a query expression, the Enhanced Full-Text Search
engine tries to match it with a topic name. If you enter a phrase in a query
expression, the Enhanced Full-Text Search engine replaces spaces with
hyphens (-), and then tries to match it with a topic name. For example, the
Enhanced Full-Text Search engine matches “saint bernard” with the topic
“saint-bernard”.

See the sample_text_topics.sql file for examples of using topics in queries.

Troubleshooting topics
If the knowledge_base configuration parameter specifies a knowledge base
map file that does not exist, the Enhanced Full-Text Search engine cannot start
a session with Verity, and the server will not start. If the map file exists but
contains invalid entries, Verity issues warning messages at start-up time. You
can correct errors by editing the <textserver>.cfg file in the $SYBASE
directory. You can correct path information and change the line beginning:
“knowledge_base=”.

User’s Guide 43

C H A P T E R 5 Writing Full-Text Search Queries

This chapter describes the pseudo columns, search operators, and
modifiers that you can include in a full-text search.

Components of a full-text search query
To write a full-text search query, enter the search parameters as part of an
Adaptive Server select statement. Then the Enhanced Full-Text Search
engine processes the search. The select statement requires:

• A where clause that assigns a Verity language query to the index_any
pseudo column

• Pseudo columns to further define the parameters of the search
(optional)

• A join between the IDENTITY column or primary key from the
source table and the id column from the index table

For example, to return the 10 documents from the copy column of the
blurbs table that have the most occurrences of the word “software,” enter:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<many> <word> software"
and t1.max_docs = 10

Adaptive Server passes the Verity query to the Enhanced Full-Text Search
engine to process the search. See “How a full-text search works” on page
10.

Topic Page
Components of a full-text search query 43

Pseudo columns in the index table 44

Full-text search operators 50

Operator modifiers 60

Pseudo columns in the index table

44 Enhanced Full-Text Search Specialty Data Store

Default behaviour
The default or simple syntax of a query to the Enhanced Full-Text Search
engine is treated broadly:

1 Searches are case sensitive.

2 The STEM operator applies to search words.

3 The MANY modifier is applied.

4 The ACCRUE operator is activated at the parent level.

Pseudo columns in the index table
Pseudo columns are columns in the index table that define the parameters of
the search and provide access to the results data. See “The index table” on page
7. These columns are valid only in the context of a query; that is, the
information in the columns is valid only for the duration of the query. If the
query that follows contains a different set of parameters, the pseudo columns
contain a different set of values.

Each pseudo column in an index table describes a different search attribute. For
example, if you indicate the score column, the query displays only the result
set that falls within the parameters you define. For example, the following
query displays only the results that have a score value greater than 90:

index_table_name.score > 90

Other pseudo columns (like highlight) are used to retrieve data generated by
Verity for a particular document. Table 5-1 describes the pseudo columns that
are maintained by the Enhanced Full-Text Search engine.

Table 5-1: Enhanced Full-Text Search engine pseudo columns

Pseudo column
name Description Datatype

Length
(in
bytes)

cluster_number Contains the cluster that the row is part of. Clusters are
numbered starting with 1. You can use the cluster_number
column only in the select clause of a query.

int 4

cluster_keywords Contains the keywords that Verity uses to build the cluster.
You can use cluster_keywords only in the select clause of a
query.

varchar 255

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 45

The following sections describe the functionality of the pseudo columns.

Using the score column to relevance-rank search results
Relevance ranking is the ability of the Enhanced Full-Text Search engine to
assign the score parameter a value that indicates how well a document satisfies
the query. The score calculation depends on the search operator used in the
query. See “Using the Verity operators” on page 52. The closer the document
satisfies the query, the higher the score value is for that document.

highlight Offsets within the document all words from the query. You
can use highlight only in the select clause of a query.

text 16

id Uniquely identifies a document within a collection. Used to
join with the IDENTITY column of the source table. You can
use id in the select clause or where clause of a query.

numeric 6

index_any Provides a Verity language query to the Enhanced Full-Text
Search engine. You can use index_any only in a where
clause. Although the pseudo-column is defined as
char(255),the maximum length of the index_any clause is
16000.

varchar 255

max_docs Limits results to the first n documents, based on the default
sort order. In a clustered result set, limits results to the first n
documents in each cluster. You can use max_docs only in a
where clause.

int 4

score The normalized measure of correlation between search
strings and indexed columns. The score associated with a
specific document has meaning only in reference to the query
used to retrieve the document. You can use score in a select
clause or a where clause.

int 4

sort_by Specifies the sort order in which to return the result set.

The Enhanced Full-Text Search engine allows up to 16
sort specifications in the sort_by column.

You can use sort_by only in a where clause.

varchar 35

summary Selects summarization data. You can use the summary
column only in the select clause of a query.

varchar 255

total_docs Contains the total number of documents that matched teh
search criteria.

int 4

Pseudo column
name Description Datatype

Length
(in
bytes)

Pseudo columns in the index table

46 Enhanced Full-Text Search Specialty Data Store

For example, if you search for documents that contain the word “rain,” a
document with 12 occurrences of “rain” receives a higher score value than a
document with 6 occurrences of “rain.”

If you set score to a high value (such as 90) in your query, you limit the result
set to documents that have a score value greater than that number.

Note Verity uses decimals for score values; Sybase uses whole numbers. For
example, if Verity reports a score value of .85, Sybase reports the same value
as 85.

For example, the following query searches for documents that contain the word
“raconteur” or “Paris,” or both, and that have a score of 90 or greater:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 90
and t1.index_any = "<accrue>(raconteur, Paris)"
score copy
----- --
(0 rows affected)

The query does not find any documents that contain the word “raconteur” or
“Paris” and that have a score greater than 90. However, if the score value in the
query is lowered to 39, you find that one document in the blurbs table mentions
the word “raconteur” or “Paris:”

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 39
and t1.index_any = "<accrue>(raconteur, Paris)"
score copy
----- --
40 A chef’s chef and a raconteur’s raconteur, Reginald
 Blotchet-Halls calls London
his second home. "Th’ palace
 . . .

Using the sort_by column to specify a sort order
The sort order specifies the collating sequence used to order the data in the
result set. The default sort order is set by the sort_order configuration
parameter. See “Setting the default sort order” on page 72. Case insensitive
sort order is supported.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 47

Use the sort_by pseudo column to return a result set with a sort order other than
the default. You can specify up to 16 sort specifications in the sort_by pseudo
column.

Table 5-2 lists the values for the sort_by pseudo column.

Table 5-2: Values for the sort_by pseudo column

Note Before you can sort by specific columns, you must modify the style.vgw
and style.ufl files. See “Setting up a column to use as a sort specification” on
page 30.

For example, the following query sorts the documents by timestamp in
ascending order:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 90
and t1.index_any = "<accrue>(raconteur, Paris)"
and t1.sort_by = "fts_timestamp asc"

Using the summary column to summarize documents
Use the summary pseudo column to have queries return only summaries of the
documents that meet the search criteria, rather than returning entire documents.
The summary column is not available by default; you must edit the style.prm
file prior to creating the text index to enable summarization. See “Enabling
query-by-example, summarization, and clustering” on page 27.

Value Description

fts_score desc Returns a result set sorted by score in descending order.

fts_score asc Returns a result set sorted by score in ascending order.

fts_timestamp desc Returns a result set sorted by a timestamp in descending order.

fts_timestamp asc Returns a result set sorted by a timestamp in ascending order.

column_name desc Returns a result set sorted according to the descending order of a column.
column_name is the name of the source table’s column.

column_name asc Returns a result set sorted according to the ascending order of a column.
column_name is the name of the source table’s column.

fts_cluster asc Returns a clustered result set. See “Using pseudo columns to request clustered
result sets” on page 48.

Pseudo columns in the index table

48 Enhanced Full-Text Search Specialty Data Store

For example, the following query returns only summaries of documents that
include the words “Iranian” and “book” (in this example, the style.prm file is
configured to display 255 characters):

select t1.score, t1.summary
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 70
and t1.index_any = "(Iranian <and> book)"
score summary
----- ---
-------------- 78 They asked me to write about myself
and my book, so here
 goes: I started a restaurant called "de Gustibus"
with two
 of my fri
(1 row affected)

The Enhanced Full-Text Search engine supports summaries of up to 255 bytes.

For additional examples of queries using summarization, see the sample script
sample_text_queries.sql in the $SYBASE/$SYBASE_FTS/sample/scripts
directory.

Using pseudo columns to request clustered result sets
The clustering function analyzes a result set and groups rows into clusters so
that the rows in each cluster are semantically more similar to each other, on
average, than they are to other rows in other clusters. Ordering rows by
subtopics can help you get a sense of the major subject areas covered in the
result set.

Returning a clustered result set can be significantly slower than returning a
nonclustered result set. If the response time of a query is critical, use a
nonclustered result set.

Preparing to use clustering

Before you request a clustered result set, you must build the text index with the
clustering function enabled. See “Enabling query-by-example,
summarization, and clustering” on page 27.

The Verity clustering algorithm attempts to group similar rows together, based
on the values of the following configuration parameters:

• cluster_style

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 49

• cluster_max

• cluster_effort

• cluster_order

Use sp_text_cluster to have a query use values that are different from the
default values of these configuration parameters. See sp_text_cluster on page
149.

Writing queries requesting a clustered result set

To obtain a clustered result set, specify “fts_cluster ” as the sort specification
in the sort_by pseudo column of the query. For example:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<many> <word> software"
and t1.max_docs = 10
and t1.sort_by = "fts_cluster asc"

Include any of the following pseudo columns in your query to return additional
clustering information:

• cluster_number – contains the number of the cluster the row belongs to.
Clusters are numbered starting with 1.

• cluster_keywords – contains the most common words found in the cluster.
The cluster_keywords column contains a null value for each row that does
not fit into any cluster.

• max_docs – limits the number of rows returned for each cluster. In a
nonclustered query, the max_docs column limits the total number of rows
that are returned in a result set.

• score – contains a value of 0 to 10000. The higher the score, the closer the
row is to the cluster center. A score of 0 indicates the row does not fit into
any cluster. In a nonclustered query, the score column can contain a value
of 0 to 100. The search engine does not return results with a score of 0. A
score of 0 represents “no match” but the user never sees a score of 0.

See the sample script named sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory for examples of SQL
statements using clustering.

Full-text search operators

50 Enhanced Full-Text Search Specialty Data Store

Full-text search operators
The special search operators that you use to perform full-text searches are part
of the Verity search engine. Table 5-3 describes the Verity search operators
provided by the Enhanced Full-Text Search engine.

Table 5-3: Verity search operators

Operator name Description

accrue Selects documents that contain at least one of the search elements specified in a query.
The more search elements there are, the higher the score.

and Selects documents that contain all the search elements specified in a query.

complement Returns the complement of the score value (the score value subtracted from 100).

in Selects documents that contain the search criteria in the document zone specified.

like Selects documents that are similar to the sample documents or passages specified in
a query.

near Selects documents containing the specified search elements, where the closer the
search terms are to each other in a document, the higher the document’s score.

near/n Selects documents containing two or more search terms within n number of words of
each other, where n is an integer up to 1000. The closer the search terms are to each
other in a document, the higher the document’s score.

or Selects documents that contain at least one of the search elements specified in a query.

paragraph Selects documents that include all the search elements you specify within the same
paragraph.

phrase Selects documents that include a particular phrase. A phrase is a grouping of two or
more words that occur in a specific order.

product Multiplies the score values for each of the items of the search criteria.

sentence Selects documents that include all the specified words in the same sentence.

stem Expands the search to include the specified word and its variations.

sum Adds the score values for all items in the search criteria.

thesaurus Expands the search to include the specified word and its synonyms.

topic Specifies that the search term you enter is a topic.

typo/n Expands the serach to include the specified word plus words that are similar. The
optional n variable specifies the maximum number of errors between the query term
and the matched term.

wildcard Matches wildcard characters included in search strings. Certain characters indicate a
wildcard specification automatically.

word Performs a basic word search, selecting documents that include one or more instances
of the specified word.

yesno Converts all nonzero score values to 100.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 51

Considerations when using Verity operators
When you write full-text search queries:

• You must enclose the operators in angle brackets (<>) in the query. If they
are not enclosed in angle brackets, the Enhanced Full-Text Search engine
issues error messages similar to the following:

Msg 20200, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
Error E1-0111 (Query Builder): Syntax error in query string near
character 5
Msg 20200, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
Error E1-0114 (Query Builder): Error parsing query: word(tasmanian)
Msg 20101, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
VdkSearchNew failed with vdk error (-40).
Msg 20101, Level 15, State 0:
Server ‘KRAZYKAT’, Line 1:
VdkSearchGetInfo failed with vdk error (-11).
score copy
----- --
(0 rows affected) score

• You must enclose the Verity language query in single quotes (’) or double
quotes ("). The Enhanced Full-Text Search engine strips off the outermost
quotes before it sends the query to Verity. For example, when you enter the
query:

...where index_any = "’?own’"

the Enhanced Full-Text Search engine sends the following query to Verity:

’?own’

• A query may comprise several “index_any” clauses anded together in
SQL. The right and value strings can be prefixed with “<snnn>”. All such
strings are concatenated in Enhanced Full-Text Search in the order
determined by the “nnn” values. The “<snnn>” is removed. For instance:

where index_any="<s001>hello"
and index_any="<s002> world"

is the same as:

where index_any = "hello world"

This is a workaround for search strings that are greater than 255
characters.

Full-text search operators

52 Enhanced Full-Text Search Specialty Data Store

• Search terms entered in mixed case automatically become case sensitive.
Search terms entered in all uppercase or all lowercase are not
automatically case sensitive. For example, a query on “Server” finds only
the string “Server”. A query on “server” or “SERVER” finds the strings
“Server”, “server”, and “SERVER”.

• You can use alternative syntax for the query expressions shown in Table
5-4.

Table 5-4: Alternative Verity syntax

When using the alternative syntax, remember that the Enhanced Full-Text
Search engine strips off the outermost quotes before it sends the query to
Verity. For example, when you enter the query:

...where index_any = "’play’"

the Enhanced Full-Text Search engine sends the following query to Verity:

’play’

This is the same as:

<MANY><STEM>play

Using the Verity operators
The following sections describe how to use the Verity operators shown in
Table 5-3 on page 50.

accrue

The accrue operator selects documents that contain at least one of the search
items specified in the query. There must be two or more search elements. Each
result is relevance-ranked. For example, the following query searches for the
word “restaurant” or “deli” or both in the copy column of the blurbs table:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "<accrue>(restaurant, deli)"

Standard query expression Alternative syntax

<MANY><WORD>string "string"

<MANY><STEM>string ’string’

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 53

and, or

The and and or operators select documents that contain the specified search
elements. Each result is relevance-ranked. The and operator selects documents
that contain all the elements specified in the query. For example, the following
query selects documents that contain both “Iranian” and “business”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "(Iranian <and> business)"

The or operator selects the documents that contain any of the search elements.
For example, if the preceding query is rewritten to use the or operator, the query
selects documents that contain the word “Iranian” or “business”:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "(Iranian <or> business)"

complement

The complement operator returns the complement of the score value for a
document; that is, it subtracts the value of score from 100 and returns the result
as the score value for the document.

in

The in operator selects documents that contain the specified search element in
one or more document zones. Document zones are created for a text index in
the following two scenarios:

• When you create an index on two or more columns using
sp_create_text_index, a document zone is created for each column in the
text index. See “Specifying multiple columns when creating a text index”
on page 22. A document zone is not created when you create a text index
on a single column. For example, if you specify the au_id and copy
columns of the blurbs table when you create the text index, you can issue
the following query:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "gorilla <in> copy"

Full-text search operators

54 Enhanced Full-Text Search Specialty Data Store

This returns rows that contain the word “gorilla” in the copy column.
However, if you specify only the copy column of the blurbs table when you
create the text index, this query does not return any rows.

• When you create an index that uses a filter, a document zone is created for
each tag in the document. See “Using filters on text that contains tags” on
page 32. You can limit your search to a particular tag by specifying the tag
name after the in operator. For example, to search for the word
“automotive” in a “title” tag in an HTML document, specify:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = "automotive <in> title"

Text indexes utilizing filters can contain only one column.

like

The like operator selects documents that are similar to the documents or
passages you provide. The search engine analyzes the text to find the most
important terms to use. If you specify multiple samples, the search engine
selects important terms that are common across the samples. Each result is
relevance-ranked.

The like operator accepts a single operand, called the query-by-example (QBE)
specification. The QBE specification can be either literal text or document IDs.
The document IDs are from the IDENTITY column in the source table. For
example, to select documents that are similar to the document in the copy
column in the row with an IDENTITY of “2”, enter:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 35
and t1.index_any = ’<like> ("{2}")’

Before using literal text in the QBE specification, you must uncomment the
following line in the style.prm file:

$define DOC-FEATURES "TF"

See “Enabling query-by-example, summarization, and clustering” on page 27.

See the sample script named sample_text_queries.sql in the
$SYBASE/$SYBASE_FTS/sample/scripts directory for examples of SQL
statements using QBE.

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 55

near, near/n

The near operator selects documents that contain the items specified in the
query and are near each other (“near” being a relative term). The documents in
which the search words appear closest to each other receive the highest
relevance-ranking.

The near/n operator specifies how far apart the items can be (n has a maximum
value of 1000). The following example selects documents in which the words
“raconteur” and “home” appear within 10 words of each other:

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<near/10>(raconteur, home)"

or

See “and, or” on page 53.

phrase

The phrase operator selects documents that contain a particular phrase (a group
of two or more items that occur in a specific order). Each result is relevance-
ranked. The following example selects the documents that contain the phrase
“gorilla’s head”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<phrase>(gorilla’s head)"

paragraph

The paragraph operator selects documents in which the specified search
elements appear in the same paragraph. The closer the words are to each other
in a paragraph, the higher the score the document receives in relevance-
ranking. The following example searches for documents in which the words
“text” and “search” occur within the same paragraph:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><paragraph>(text, search)"

Full-text search operators

56 Enhanced Full-Text Search Specialty Data Store

product

The product operator multiplies the score value for the documents for each of
the search elements. To arrive at a document’s score, the Enhanced Full-Text
Search engine calculates a score for each search element and multiplies the
scores. For example:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<product>(cat, created)"

The score value for each search element is 78; however, because the score
values for the items are multiplied, the document has a score value of 61 (.78
x.78 =.61(100) = 61).

sentence

The sentence operator selects documents in which the specified search
elements appear in the same sentence. The closer the words are to each other
in a sentence, the higher the score the document receives in relevance-ranking.
The following example searches for documents in which the words “tax” and
“service” occur within the same sentence:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50
and t1.index_any = "<many><sentence>(tax, service)"

stem

The stem operator searches for documents containing the specified word and
its variations. For example, if you specify the word “cook,” the Enhanced Full-
Text Search engine produces documents that contain “cooked,” “cooking,”
“cooks,” and so on. To relevance-rank the result set, include the many modifier
in the query. See “Operator modifiers” on page 60.

The following query uses the stem operator to find documents that contain
variations of the word “create,” that is, words that contain the word “create” as
a stem. Notice that even though the first document contains a word in which
“create” is not a perfect stem (“creative”), the document is still selected:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 10
and t1.index_any = "<many><stem>create"

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 57

score copy
----- --
78 Anne Ringer ran away from the circus as a child. A
 university creative writing professor and her family
 . . .
78 If Chastity Locksley didn’t exist, this troubled world
 would have created her! Not only did she master the mystic

sum

The sum operator totals the score values for each search element, up to a
maximum of 100. To arrive at a document’s score, the Enhanced Full-Text
Search engine calculates a score for each search element and totals those
scores.

thesaurus

The thesaurus operator searches for documents containing a synonym for a
search element. For example, you might perform a search using the word
“dog,” looking for documents that use any of its synonyms (“canine,” “pooch,”
“pup,” “watchdog,” and so on). Each result is relevance-ranked.

The Enhanced Full-Text Search engine supplies a default thesaurus. You can
also create a custom thesaurus. See “Creating a custom thesaurus” on page 34.

The following example uses the thesaurus operator to find a result set that
contains synonyms for the word “crave.” The first document is selected
because it contains the word “want;” the second, because it contains the word
“hunger:”

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<thesaurus>(crave)"
score copy
----- ---
78 They asked me to write about myself and my book, so here
 goes: I started a restaurant called "de Gustibus" with two
 . . .
 of restaurant over another, when what they really want is a
 . . .
78 A chef’s chef and a raconteur’s raconteur, Reginald
 Blotchet-Halls calls London his second home. "Th’ palace
 . . .
 his equal skill in satisfying our perpetual hunger for

Full-text search operators

58 Enhanced Full-Text Search Specialty Data Store

 . . .

topic

The topic operator selects documents that meet the search criteria defined by
the specified topic. See “Creating topics” on page 38. For example, use the
following syntax to find documents that meet the criteria defined by the topic
“engineering:”

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = "<topic>(engineering)"

typo/n

The typo/n operator expands the search to include the specified word plus
words that are similar. The optional n variable specifies the maximum number
of errors between the query and the matched terms. For example, typo mouse
returns documents that include words such as “house,” “louse,” and “moose.”

wildcard

The wildcard operator allows you to substitute wildcard characters for part of
the item for which you are searching. Table 5-5 describes the wildcard
characters and their attributes.

Table 5-5: Enhanced Full-Text Search engine wildcard characters

Character Function Syntax Locates
? Specifies one alphanumeric character. You do

not need to include the wildcard operator when
you include the question mark in your query.
The question mark is ignored in a set ([]) or in
an alternative pattern ({}).

’?an’ “ran,” “pan,” “can,”
and “ban”

* Specifies zero or more of any alphanumeric
character. You do not need to include the
wildcard operator when you include the
asterisk in your query; you should not use the
asterisk to specify the first character of a
wildcard-character string. The asterisk is
ignored in a set ([]) or in an alternative pattern
({}).

’corp*’ “corporate,”
“corporation,”
“corporal,” and
“corpulent”

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 59

To relevance-rank the result set, include the many modifier in the query. See
“Operator modifiers” on page 60.

For example, the following query searches for documents that include
variations of the word “slingshot:”

select t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id
and t1.index_any = ’"slingshot*"’
score copy
----- ---
100 Albert Ringer was born in a trunk to circus parents, but
 another kind of circus trunk played a more important role
 . . .
 gorilla. "Slingshotting" himself from the ring ropes,
 . . .

word

The word operator searches for documents containing the specified word. To
relevance-rank the result set, include the many operator in the query. The
following example searches the blurbs table for documents containing the word
“palates”:

select t1.score, t2.copy
from i_blurbs t1, blurbs t2
where t1.id=t2.id and t1.score > 50

[] Specifies any single character in a set. If a
word includes a set, you must enclose the word
in backquotes (‘‘). Also, there can be no spaces
in a set.

<wildcard> ‘c[auo]t‘ “cat,” “cut,” and
“cot”

{} Specifies one of each pattern separated by a
comma. If a word includes a pattern, you must
enclose the word in backquotes (‘‘). Also,
there can be no spaces in a set.

<wildcard>
‘bank{s,er,ing}‘

“banks,” “banker,”
and “banking”

^ Specifies one of any character not included in
a set. The caret (^) must be the first character
after the left bracket ([) that introduces a set.

<wildcard> ‘st[^oa]ck‘ Excludes “stock”
and “stack,” but
locates “stick” and
“stuck”

- Specifies a range of characters in a set. <wildcard> ‘c[a-r]t‘ Includes every
three-letter word
from “cat” to “crt”

Character Function Syntax Locates

Operator modifiers

60 Enhanced Full-Text Search Specialty Data Store

and t1.index_any = "<many><word>(palates)"

yesno

The yesno operator converts all nonzero score values to 100. For example, if
the score values for five documents are 86, 45, 89, 89, and 100, each of those
documents is returned with a score value of 100. score values of 0 are not
changed. The yesno operator is helpful for ensuring that all documents
containing the search criteria are returned in the result set, regardless of the sort
order.

Operator modifiers
The Verity query language includes modifiers that you can use with the
operators to refine a search. The modifiers are described in Table 5-6.

Table 5-6: Verity operator modifiers

Modifier
name Description

Works with
these operators Example

case Performs case-
sensitive searches. If
you enter search terms
in mixed case, the
search is automatically
case sensitive.

wildcard

word

<case><word>(Net)

many Counts the number of
times that a word,
stemmed word, or
phrase occurs in a
document. Relevance-
ranks the document
according to its
density.

paragraph

phrase

sentence

stem

word

wildcard

<many><stem>(write)

not Excludes documents
that contain the items
for which the query is
searching.

and

or

cat<and><not>elephant

CHAPTER 5 Writing Full-Text Search Queries

User’s Guide 61

order Specifies that the items
in the documents occur
in the same order in
which they appear in
the query.

Always place the order
modifier just before
the operator

near/n

paragraph

sentence

Simple syntax:

tidbits<order><paragraph>king

Explicit syntax:

<order><paragraph>(tidbits,king)

Modifier
name Description

Works with
these operators Example

Operator modifiers

62 Enhanced Full-Text Search Specialty Data Store

User’s Guide 63

C H A P T E R 6 System Administration

This chapter describes system administration issues for the Enhanced
Full-Text Search engine.

Starting the Enhanced Full-Text Search engine on
UNIX

Use the startserver utility to start the Enhanced Full-Text Search engine on
UNIX. The startserver utility is included in the install directory of
Adaptive Server. For example, to start a Enhanced Full-Text Search
engine named KRAZYKAT, enter:

startserver -f
$SYBASE/$SYBASE_FTS/install/RUN_KRAZYKAT

where the -f flag specifies the relative path to the runserver file. After you
issue the command, the Enhanced Full-Text Search engine issues a series
of messages describing the settings of the configuration parameters.

Creating the runserver file
The runserver file contains start-up commands for the Enhanced Full-Text
Search engine. The runserver file can include the flags shown in Table 6-
1.

Topic Page
Starting the Enhanced Full-Text Search engine on UNIX 63

Starting the Enhanced Full-Text Search engine on Windows NT 65

Shutting down the Enhanced Full-Text Search engine 66

Modifying the configuration parameters 67

Backup and recovery for the Enhanced Full-Text Search engine 75

Starting the Enhanced Full-Text Search engine on UNIX

64 Enhanced Full-Text Search Specialty Data Store

Table 6-1: Definition of flags in the runserver file

A sample runserver file is copied to the $SYBASE/$SYBASE_FTS/install
directory during installation. Make a copy of this file, renaming it
RUN_server_name, where server_name is the name of the Enhanced Full-Text
Search engine. You must include the correct path environment variable for
your platform in the runserver file. Table 6-2 shows the path environment
variable to use for each platform.

Table 6-2: Path environment variable for the runserver file

For example, the runserver file on Sun Solaris for a Enhanced Full-Text Search
engine named KRAZYKAT would be RUN_KRAZYKAT and would be similar
to:

#!/bin/sh
#

LD_LIBRARY_PATH="$SYBASE/$SYBASE_FTS/lib:$LD_
LIBRARY_PATH"
export LD_LIBRARY_PATH

$SYBASE/bin/txtsvr -SKRAZYKAT

The start-up command in the runserver file must consist of a single line and
cannot include a return. If you must carry the contents of the file over to a
second or third line, include a backslash (\) for a line break.

Flag Definition

-Sserver_name Specifies the name of the Enhanced Full-Text
Search engine and is used to locate the
configuration file and the network connection
information in the interfaces file.

-t Causes the Enhanced Full-Text Search engine
to write start-up messages to standard error.

-lerrorlog_path Specifies the path to the error log file.

-iinterfaces_file_path Specifies the path to the interfaces file.

Platform Environment variable

RS/6000 AIX LIBPATH

Sun Solaris LD_LIBRARY_PATH

HP 9000(800) SHLIB_PATH

Compaq Tru64 LD_LIBRARY_PATH

Linux LD_LIBRARY_PATH

NT PATH

CHAPTER 6 System Administration

User’s Guide 65

Starting the Enhanced Full-Text Search engine on
Windows NT

You can start the Enhanced Full-Text Search engine from Sybase Central™, as
a service, or from the command line:

• From Sybase Central – see your Sybase Central documentation for
information about starting servers.

• As a service – see “Starting the Enhanced Full-Text Search engine as a
service” on page 65

• From the command line – use the following syntax:

%SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe -Sserver_name
[-t] [-i%SYBASE%path_to_sql.ini_file] [-
l%SYBASE%path_to_errorlog]

where:

• -S is the name of the Enhanced Full-Text Search engine you are
starting.

• -t directs start-up messages to standard error.

• -i is the path to the sql.ini file. This path must include the sql.ini file
name.

• -l is the path to the error log. This path must include the name of the
error log file.

For example, to start a Enhanced Full-Text Search engine named KRAZYKAT
on NT using the default sql.ini and error log files, and using -t to trace start-up
messages, enter:

%SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe -SKRAZYKAT -t

The Enhanced Full-Text Search engine is running when you see the start-up
complete message.

Starting the Enhanced Full-Text Search engine as a service
Use the instsvr utility in Sybase Central to add the Enhanced Full-Text Search
engine to the list of items you can start and stop with the Services utility. instsvr
is located in the %SYBASE%\%SYBASE_FTS%\bin directory.

The instsvr utility uses the following syntax:

instsvr.exe service_name %SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe

Shutting down the Enhanced Full-Text Search engine

66 Enhanced Full-Text Search Specialty Data Store

"startup_parameters"

where:

• service_name is the name of the Enhanced Full-Text Search engine you
are adding as a service. With Sybase Central, Sybase recommends you use
a server name with the extension “_TS” (for example, KRAZYKAT_TS).

• startup_parameters are any parameters you want used at start-up.

For example, to install an Enhanced Full-Text Search engine named
KRAZYKAT_TS as a service, enter:

instsvr.exe KRAZYKAT_TS %SYBASE%\sds\text\bin\txtsvr.exe
"-SKRAZYKAT_TS -t"

Note To include more than one parameter (for example, -i), enclose all the
parameters in one set of double quotes.

To configure Sybase Central to start and stop your Enhanced Full-Text Search
engine, you must provide a service name that begins with
“SYBTXT_server_name”, where server_name is the name of the Enhanced
Full-Text Search engine listed in the interfaces file. For example, if the name
in the interfaces file is KRAZYKAT_TS, run the following instsvr command to
create a service that can be managed by Sybase Central:

instsvr SYBTXT_KRAZYKAT_TS %SYBASE%\%SYBASE_FTS%\bin\txtsvr.exe
"-SKRAZYKAT_TS -t"

Shutting down the Enhanced Full-Text Search engine
Use the following command to shut down the Enhanced Full-Text Search
engine from Adaptive Server:

server_name...sp_shutdown

where server_name is the name of the Enhanced Full-Text Search engine you
are shutting down.

Only users with sa_role can shut down the Enhanced Tull-Text Search engine.

For example, to shutdown a Enhanced Full-Text Search engine named
KRAZYKAT, enter:

KRAZYKAT...sp_shutdown

CHAPTER 6 System Administration

User’s Guide 67

Modifying the configuration parameters
Each Enhanced Full-Text Search engine has configuration parameters with
default values, as shown in Table 6-3.

Table 6-3: Configuration parameters

Parameter Description Default value

batch_size Determines the size of the batches sent to the
Enhanced Full-Text Search engine.

500

batch_blocksize When enabled, the text server reads data in
smaller chunks. This parameter instructs the text
server to retrieve n number of rows at a time.
Range is 0 (disabled) to 65535.

0

max_indexes The maximum number of text indexes that are
created in the Enhanced Full-Text Search
engine.

126

max_stacksize Size (in kilobytes) of the stack allocated for
client threads.

34,816

max_threads Maximum number of threads available for the
Enhanced Full-Text Search engine.

50

max_packetsize Packet size sent between the Enhanced Full-
Text Search engine and the Adaptive Server.

2048

max_sessions Maximum number of sessions for the Enhanced
Full-Text Search engine.

100

min_sessions Minimum number of sessions for the Enhanced
Full-Text Search engine.

10

language Language used by the Enhanced Full-Text
Search engine.

us_english

charset Character set used by the Enhanced Full-Text
Search engine.

iso_1

vdkCharset Character set used by Verity search engine. 850

vdkLanguage Language used by Verity search engine. english

vdkHome Verity directory. UNIX:

$SYBASE/$SYBASE_FTS/verity

Windows NT:

%SYBASE%\%SYBASE_FTS%\verity

collDir Storage location of the Enhanced Full-Text
Search engine’s collection.

UNIX:

$SYBASE/$SYBASE_FTS/collections

Windows NT:

%SYBASE%\%SYBASE_FTS%\collections

Modifying the configuration parameters

68 Enhanced Full-Text Search Specialty Data Store

defaultDb Name of the Enhanced Full-Text Search
engine database that stores text index metadata.

text_db

interfaces Full path to the directory in which the interfaces
file used by the Enhanced Full-Text Search
engine is located.

UNIX:

$SYBASE/interfaces

Windows NT:

%SYBASE%\ini\sql.ini

sort_order Default sort order. 0

errorLog Full path name to the error log file. The directory in which you start Enhanced
Full-Text Search engine

traceflags String containing numeric identifiers used to
generate diagnostic information.

0

srv_traceflags String containing numeric flag identifiers used to
generate Open Server diagnostic information.

0

max_session_fd The maximum number of file descriptors used
by an Enhanced Full-Text Search session. See
“File Descriptors and Enhanced Full-Text
Search” on page 86.

0

cluster_style Clustering style to use. Fixed

cluster_max Maximum number of clusters to generate when
cluster_style is set to Fixed.

0

cluster_effort Amount of effort the Enhanced Full-Text
Search engine should expend on finding a good
cluster.

Default

cluster_order The order to return clusters and rows within a
cluster.

0

auto_online Specifies whether to bring indexes online
automatically when the Enhanced Full-Text
Search engine is started. 0 indicates online is
not automatic; 1 indicates automatic.

0

backDir The default location for the placement of text
index backup files.

UNIX:

$SYBASE/$SYBASE_FTS/backup

Windows NT:

%SYBASE%\%SYBASE_FTS%\backup

knowledge_base The location of a knowledge base map for
implementing the Verity topics feature.

null

nocase Sets the case-sensitivity of the Enhanced Full-
Text Search engine. If you are using a case-
sensitive sort order in Adaptive Server, set to 0.
If you are using a case-insensitive sort order, set
to 1.

0

Parameter Description Default value

CHAPTER 6 System Administration

User’s Guide 69

A sample configuration file that includes all of these parameters is copied to
your installation directory during installation. The sample configuration file,
which is named textsvr.cfg is listed in Appendix B, “Sample Files.”

Modifying configuration values
Use sp_text_configure to change the value of a configuration parameter. The
syntax is:

sp_text_configure server_name, config_name, config_value

where:

• server_name is the name of the Enhanced Full-Text Search engine.

• config_name is the name of the configuration parameter.

• config_value is the value you assign to the configuration parameter.

See sp_text_configure on page 151.

Available configuration parameters
Table 6-4 provides a list of available configuration parameters with valid
limits:

Table 6-4: Limits to Configuration parameters

Parameter Values Static/dynamic

batch_size 0 – MAX_INT Dynamic

batch_blocksize 0 – 65535 Dynamic

max_indexes 0 – MAX_INT Static

max_stacksize 0 – MAX_INT Static

max_threads 0 – MAX_INT Static

max_packetsize 0 – MAX_INT Static

max_sessions 0 – MAX_INT Static

min_sessions 0 – max_sessions Static

language french, spanish german, us_english Static

charset ascii_8, cp037, cp1047, cp437, cp500, cp850, deckanji, eucjis,
iso_1, mac, roman8, sjis, utf8

Static

vdkCharset 50, 437, 1252, mac1 (Just the ones listed in the manual) Static

Modifying the configuration parameters

70 Enhanced Full-Text Search Specialty Data Store

Setting the default language
The default language for Verity is set with the vdkLanguage configuration
parameter. By default, vdkLanguage is set to “english.” You can configure
Verity to use a different default language. Table 6-5 lists the locales supported
by Sybase.

vdkLanguage frenchx, spanishx, germanx, english, englishx, bokmalx,
dutchx, finnishx, nynorskx, swedishx, portugx, italianx,
danishx

Static

vdkHome A string < 255 chars Static

collDir A string < 255 chars Static

default_Db A string < 32 chars Static

interfaces A string < 255 chars Static

sort_order 0, 1, 2, 3 Dynamic

errorLog A string < 255 chars Static

traceflags A string with comma delimited numbers ranging anywhere
from 1 to 15

Static

srv_traceflags A string with comma delimited numbers ranging anywhere
from 1 to 8

Static

cluster_style Coarse, Medium, Fine, Fixed Dynamic

cluster_max 0 – MAX_INT Dynamic

cluster_effort Low, Medium, High, Default Dynamic

cluster_order 0 or 1 Dynamic

auto_online 0 or 1 Static

backCmd A string < 255 chars Dynamic

restoreCmd A string < 255 chars Dynamic

backDir A string < 255 chars Static

knowledge_base A string < 255 chars Static

nocase 0 or 1 Dynamic

max_session_fd 0, 5 – MAX_INT Static

Parameter Values Static/dynamic

CHAPTER 6 System Administration

User’s Guide 71

Table 6-5: vdkLanguage configuration parameters

Additional language adapters are available in the
$SYBASE/$SYBASE_FTS/verity/common directory; however, the Enhanced
Full-Text Search engine displays messages only in the languages shown in
Table 6-5.

The language parameter is the language the Enhanced Full-Text Search engine
uses to display its error messages and Open Server and Open Client error
messages. Set the language parameter to the Adaptive Server language.

With the Enhanced Full-Text Search engine, run:

sp_text_configure KRAZYKAT, ’vdkLanguage’, ’spanish’

For more information about the Verity languages, see the Verity Web site at
http://www.verity.com.

Setting the default character set
Set the default character set for Verity using the vdkCharset parameter in the
configuration file. The files used for the Verity character sets are in
$SYBASE/$SYBASE_FTS/verity/common. Table 6-6 describes the character
sets you can use with Verity.

Table 6-6: Verity character sets

The default character set for the Enhanced Full-Text Search engine is set with
the charset parameter. Set the charset parameter to the Adaptive Server
character set.

For example, with the Enhanced Full-Text Search engine, run:

sp_text_configure KRAZYKAT, ’vdkCharset’, ’437’

Language Default locale name

English english

German german

French french

Character set Description

850 Default

437 IBM PC character set

1252 Windows code page for Western European languages

mac1 Macintosh roman

Modifying the configuration parameters

72 Enhanced Full-Text Search Specialty Data Store

Indexing on the euro symbol
To index the euro symbol, install the utf8 charset in Adaptive Server. Set
vdkLanguage to <language>x and leave vdkCharset blank. For example:

ASE 12.5.x charset = utf8
EFTS 12.5.x vdkLanguage = englishx
EFTS 12.5.x vdkCharset =

Setting the default sort order
By default, the Enhanced Full-Text Search engine sorts the result set by the
score pseudo column in descending order (the higher scores appear first). To
change the default sort order, set the sort_order configuration parameter to one
of the values in Table 6-7.

Table 6-7: Sort order values for the configuration file

For example, enter:

sp_text_configure KRAZYKAT, ’sort_order’, ’2’

When you sort a result set by descending timestamp (value 2 in Table 6-7), the
Enhanced Full-Text Search engine returns the newest documents first. The
newest documents are those that were inserted or updated most recently. When
results are sorted by ascending timestamp (value 3 in Table 6-7), the Enhanced
Full-Text Search engine returns the oldest documents first.

Setting the default sort order is especially important if your query uses the
max_docs pseudo column. The max_docs pseudo column limits the number of
rows of the result set to the first n rows, ordered by the sort order. If you set
max_docs to a number smaller than the size of the result set, the sort order you
select could exclude the rows that contain the information for which you are
searching.

Value Description

0 Returns result sets sorted by the score pseudo column in
descending order. The default value.

1 Returns result sets sorted by the score pseudo column in
ascending order.

2 Returns result sets sorted by a timestamp in descending order.

3 Returns result sets sorted by a timestamp in ascending order.

CHAPTER 6 System Administration

User’s Guide 73

For example, if you sort by ascending timestamp, the latest document added to
the table appears last in the result set. If the entire result set consists of 11
documents, and you set max_docs to 10, the latest document does not appear
in the result set. However, if you sort by descending timestamp, the latest
document appears first in the result set.

Setting trace flags
The traceflags parameter enables the logging of certain events when they occur
within the Enhanced Full-Text Search engine. Each trace flag is uniquely
identified by a number. Trace flags are described in Table 6-8.

Table 6-8: Enhanced Full-Text Search engine trace flags

Trace
flag Description

1 Traces connects, disconnects, and attention events from Adaptive
Server .

2 Traces language events. Traces the SQL statement that Adaptive
Server sent to the Enhanced Full-Text Search engine.

3 Traces RPC events.

4 Traces cursor events. Traces the SQL statement sent to the
Enhanced Full-Text Search engine by Adaptive Server.

5 Writes the errors that display to the log.

6 Traces information about text indexes. Writes the search string
being passed to Verity to the log, and writes the number of records
that the search returns to the log.

7 Traces done packets.

8 Traces calls to the interface between the Enhanced Full-Text
Search engine and the Verity API.

9 Traces SQL parsing.

10 Traces Verity processing.

11 Disables Verity collection optimization.

12 Disables sp_statistics from returning information.

13 Traces backup operations.

14 Logs Verity status and timing information.

15 Generates ngram index information for collections. ngrams
increase the speed of wildcard searches. This trace flag is required
for wildcard searches against data in Unicode format.

Modifying the configuration parameters

74 Enhanced Full-Text Search Specialty Data Store

You can enable and disable trace flags interactively, using the remote
procedure calls (RPCs) sp_traceon and sp_traceoff in the Enhanced Full-Text
Search engine.

To execute sp_traceon, use:

textserver...sp_traceon 1,2,3,4

where textserver is the name of the Enhanced Full-Text Search engine.

The traceflags stay active until the session is terminated or until the sp_traceoff
RPC is executed using the specific traceflag. To set a traceflag permanently,
either set it in the configuration file or use the sp_text_configure command.

Setting Open Server trace flags
Use the srv_traceflags parameter to turn on trace flags to log Open Server
diagnostic information. Open Server trace flags are described in Table 6-9.

Table 6-9: Open Server trace flags

For example:

sp_text_configure KRAZYKAT, ’srv_traceflags’, ’3’

30 This traceflag enables the Verity MaxClean feature that removes
out of date collection files. It should only be used during
maintenance since it could take extra time and interfere with
normal usage. It is enabled in conjuntion with
sp_optimize_text_index.

Trace
flag Description

Trace
flag Description

1 Traces TDS headers

2 Traces TDS data

3 Traces attention events

4 Traces message queues

5 Traces TDS tokens

6 Traces Open Server events

7 Traces deferred event queues

8 Traces network requests

CHAPTER 6 System Administration

User’s Guide 75

Setting case sensitivity
By default, the Enhanced Full-Text Search engine is case sensitive. This means
you must enter identifiers in the same case or they are not recognized. For
example, if you have a table named blurbs (lowercase), you cannot issue an
sp_create_text_index command that specifies the table name BLURBS. You
must issue a command that uses the same case for the table name argument:

sp_create_text_index "KRAZYKAT", "i_blurbs", "blurbs", "", "copy"

With Enhanced Full-Text Search engine, use the nocase parameter to set the
case sensitivity of the Enhanced Full-Text Search engine. 0 indicates case
sensitive; 1 indicates case insensitive. Set the nocase parameter to the sort
order case sensitivity in Adaptive Server.

This example changes the KRAZYKAT server to case insensitive.

sp_text_configure KRAZYKAT, ’nocase’, ’1’

Note The nocase parameter does not affect the case sensitivity of the Verity
query. See “Considerations when using Verity operators” on page 51.

Backup and recovery for the Enhanced Full-Text
Search engine

Backup and recovery for the Enhanced Full-Text Search Specialy Data Store is
automated with sp_text_dump_database and sp_text_load_index. These system
procedures provide a seamless interface for maintaining data and text index
integrity.

The Adaptive Server user database and the Verity collections are physically
separate. Backing up your user database does not back up the Verity
collections, and restoring your database from a backup does not restore your
Verity collections. The backup and recovery procedures described in Chapter
27, “Backing Up and Restoring User Databases,” of the System Administration
Guide apply only to the user database and the text_db database in Adaptive
Server.

Backup and recovery for the Enhanced Full-Text Search engine

76 Enhanced Full-Text Search Specialty Data Store

Follow the recommended schedule for backing up your databases, as described
in Chapter 26, “Developing a Backup and Recovery Plan,” of the System
Administration Guide. Sybase recommends that when you back up a user
database with text indexes, you also back up:

• The text_db database

• The text indexes

Note You do not have to back up the user database and text indexes at the
same time to recover the text indexes. However, you must restore the user
database before you restore the text index. This restores the text_events
table, which sp_text_load_index uses to bring the text indexes in sync with
the user database.

A regular backup schedule ensures the integrity of the text indexes, the
Adaptive Server data, and the text_events table, all of which are integral to
recovering your text indexes without having to drop and re-create them.

Customizable backup and restore
backCmd and restoreCmd allow customizable backup and restore commands to
be used instead of tar or zip commands when backing up collection files. If
backCmd and restoreCmd are blank, the default commands are used; otherwise,
the specified command is executed. String substitution is performed before
execution to allow specification of input and output directories and collection
identification. The string substitution is defined as follows:

• ${backDir} is replaced by the backup directory specified as the “backDir”
configuration parameter.

• ${collDir} is replaced by the full path name for the collection.

• ${colID} is replaced by the collection ID which is the full name of the
backup file.

Backing up Verity collections
The sp_text_dump_database system procedure backs up collections and
(optionally) the user and text_db databases. sp_text_dump_database also
maintains the text_events table by deleting entries that are no longer needed for
recovery.

CHAPTER 6 System Administration

User’s Guide 77

During a backup, the Enhanced Full-Text Search engine processes queries, but
defers any update requests until the backup is complete. This eliminates the
need to shut down and restart the Enhanced Full-Text Search engine.

Run sp_text_dump_database from the database containing the text indexes you
are backing up. Make sure all the required servers are running when issuing
sp_text_dump_database. sp_text_dump_database unconditionally backs up all
indexes of all enhanced text servers. The backup of the text indexes is placed
in the directory specified in the backDir configuration parameter. The output of
dump database is written to the Enhanced Full-Text Search error log. Sybase
recommends dumping the current database and the text_db database at the time
the text indexes are backed up. However, this is optional.

For example, to back up the text indexes, the sample_colors_db database to the
/work2/sybase/colorsbackup directory, and the text_db database to the
/work2/sybase/textdbbackup directory, enter:

sp_text_dump_database @backupdbs =
INDEXES_AND_DATABASES, @current_to = "to
’/work2/sybase/colorsbackup’", @textdb_to="to
’/work2/sybase/textdbbackkup’"

Note It is important that you back up the text_db database whenever you back
up text indexes, since that database contains the metadata for all text indexes.

sp_text_dump_database may fail on Solaris if the required file size is greater
than 2GB.

See sp_text_dump_database on page 152.

Restoring collections and text indexes from backup
sp_text_load_index system procedure restores text indexes that have been
backed up with the sp_text_dump_database system procedure.

As Database Administrator, perform the following procedures to restore your
Verity collections:

1 Restore your Adaptive Server user database and text_db database. This
returns the source tables, metadata, and text_events table to a consistent
and predictable state. Follow the procedures described in Chapter 27,
“Backing Up and Restoring User Databases,” in the System
Administration Guide, to restore user and text_db databases.

Backup and recovery for the Enhanced Full-Text Search engine

78 Enhanced Full-Text Search Specialty Data Store

2 Run sp_text_load_index to restore the Verity collection from the most
recent index dump. The procedure resets the status of all text_events table
entries made since the last index dump to “unprocessed” and notifies the
Enhanced Full-Text Search engine to process those events.

Example: To restore the sample_colors_db database and all of its text indexes:

1 Restore the text_db database:

1> use master
2> go
1> load database text_db from ’/work2/sybase/textdbbackkup’
2> go

2 Restore the sample_colors_db database:

1> load database sample_colors_db from ’/work2/sybase/colorsbackup’
2> go

3 Bring the text_db and sample_colors_db databases online:

1> online database text_db
2> online database sample_colors_db
3> go

4 Restore the text index:

1> use sample_colors_db
2> go
1> sp_text_load_index
2> go

See sp_text_load_index on page 156.

User’s Guide 79

C H A P T E R 7 Performance and Tuning

The Enhanced Full-Text Search engine is shipped with a default
configuration. You can optimize the performance of the Enhanced Full-
Text Search engine by altering the default configuration so that it better
reflects the needs of your site. This chapter describes ways in which you
can enhance performance.

Updating existing indexes
The amount of time it takes to update records in a text index can be
reduced by enabling (turning on) trace flag 11 or trace flag 12, or both:

• Enabling trace flag 11 disables Verity collection optimization. This
means that Verity does not optimize the text index after you issue
sp_text_notify, which is a performance gain. If trace flag 11 is turned
off (the default), the Enhanced Full-Text Search engine calls Verity to
optimize the text index at the end of sp_text_notify processing, which
can delay the completion of sp_text_notify.

With Enhanced Full-Text Search Specialty Data Store, you can use
sp_optimize_text_index to optimize a text index at a later time if trace
flag 11 is enabled. See sp_optimize_text_index on page 145.

Topic Page
Updating existing indexes 79

Increasing query performance 80

Reconfiguring Adaptive Server 81

Reconfiguring the Enhanced Full-Text Search engine 82

Using sp_text_notify 83

Configuring multiple Enhanced Full-Text Search engines 84

Multiple users 85

File Descriptors and Enhanced Full-Text Search 86

Increasing query performance

80 Enhanced Full-Text Search Specialty Data Store

• Enabling trace flag 12 disables the Enhanced Full-Text Search engine
from returning sp_statistics information. If trace flag 12 is turned off (the
default), an update statistics command is issued to the Enhanced Full-Text
Search engine, which can delay the completion of sp_text_notify.

If updates to the text index occur as often as every few seconds, you may
improve performance by disabling the update statistics processing and the
Verity optimization, or both, for most of the updates.

Trace flags 11 and 12 can be enabled and disabled interactively using
sp_traceon and sp_traceoff in the Enhanced Full-Text Search engine.

Increasing query performance
Two issues can significantly improve query performance:

• Limiting the number of rows returned by the Enhanced Full-Text Search
engine

• Ensuring the correct join order for queries

Limiting the number of rows
Use the max_docs pseudo column to limit the number of rows returned by the
Enhanced Full-Text Search engine. The fewer the number of rows returned by
the Enhanced Full-Text Search engine, the faster Adaptive Server can process
the join between the source table and the index table.

Ensuring the correct join order for queries
The more tables and text indexes that are listed in a join, the greater the chance
that the query will run slowly because of incorrect join order. Queries run
fastest when the text index is queried first during a join between the text index
and one or more tables.

To ensure correct join order:

• Make sure that a unique clustered or nonclustered index is created on the
IDENTITY column of the table being indexed

CHAPTER 7 Performance and Tuning

User’s Guide 81

• Limit joins to one base table and one text index

If a query is running slowly, use showplan or enable trace flag 11205, and
examine the join order. Trace flag 11205 dumps remote queries to the Adaptive
Server error log file. The fastest queries contain an index_any search condition
in the where clause and query the text index first.

The slowest queries contain the id column in the text index where clause and
query the indexed table first. In this case, rewrite the query or use forceplan to
force the join order that is listed in your query. For more information about
forceplan, see Chapter 3, “Advanced Optimizing Techniques,” in the
Performance and Tuning Guide: Optimizer and Abstract Plans.

Reconfiguring Adaptive Server
You can improve the performance of the Enhanced Full-Text Search engine by
resetting the Adaptive Server configuration parameters discussed in this
section. (For information about setting configuration parameters with
sp_configure, see Chapter 4, “Setting Configuration Parameters,” in the System
Administration Guide.)

cis cursor rows
 cis cursor rows parameter specifies the number of rows received by Adaptive
Server during a single fetch operation. The default number for cis cursor rows
is 50. Increasing this number increases the number of rows received by
Adaptive Server from the Enhanced Full-Text Search engine during a fetch
operation. However, the number you set for cis cursor rows, the more memory
Adaptive Server dynamically allocates to return the result set.

Reconfiguring the Enhanced Full-Text Search engine

82 Enhanced Full-Text Search Specialty Data Store

cis packet size
cis packet size determines the number of bytes contained in a single network
packet. The default for cis packet size is 512. You must specify values for this
parameter in multiples of 512. Increasing this parameter improves the
performance of the Enhanced Full-Text Search engine because, with a larger
packet size, it returns fewer packets for each query. However, the larger the
number you set for cis packet size, the more memory Adaptive Server allocates
for that parameter.

The cis packet size parameter is dynamic; you do not need to restart Adaptive
Server for this parameter to take effect.

Note If you change the cis packet size, you must also change max_packetsize
in the Enhanced Full-Text Search engine configuration file to the same value.
If Component Integration Services is used to access other remote servers, the
max network packet size on those servers must be increased as well.

You must restart the Enhanced Full-Text Search engine for the max_packetsize
parameter to take effect.

Reconfiguring the Enhanced Full-Text Search engine
You can improve the performance of the Enhanced Full-Text Search engine by
reconfiguring the Enhanced Full-Text Search engine configuration parameters
discussed in this section. See “Modifying the configuration parameters” on
page 67.

batch_size
 batch_size determines the number of rows per batch the Enhanced Full-Text
Search engine indexes. batch_size has a default of 500 (that is, 500 rows of data
indexed per batch). Performance improves if you increase the size of the
batches that are indexed. However, the larger the batch size, the more memory
the Enhanced Full-Text Search engine allocates for this parameter.

When considering how large to set batch_size, consider the size of the data on
which you are creating a text index. When creating the text index, the
Enhanced Full-Text Search engine allocates memory equal to (in bytes):

CHAPTER 7 Performance and Tuning

User’s Guide 83

(amount of space needed for data) x (batch_size) = memory used

For example, if the data you are indexing is 10,000 bytes per row, and
batch_size is set to 500, then the Enhanced Full-Text Search engine must
allocate almost 5MB of memory when creating the text index.

Base the batch size you choose on the typical size of your data and the amount
of memory available on your machine.

min_sessions and max_sessions
min_sessions and max_sessions determine the minimum and maximum
number of user connections allowed for the Enhanced Full-Text Search engine.
Each user connection requires approximately 5MB of memory. Do not set
max_sessions to an amount that exceeds your available memory. Also, because
the memory for min_sessions is allocated at start-up, if you set the number for
min_sessions extremely high (to allow for a large number of user connections),
a large percentage of your memory is dedicated to user connections for the
Enhanced Full-Text Search engine.

You may improve the performance of the Enhanced Full-Text Search engine by
setting min_sessions equal to the average number of user sessions that will be
used. Doing so prevents the Enhanced Full-Text Search engine from having to
allocate memory at the start of the user session.

Using sp_text_notify
Review the needs of your site before you decide how often to issue
sp_text_notify.

Configuring multiple Enhanced Full-Text Search engines

84 Enhanced Full-Text Search Specialty Data Store

Using sp_text_notify produces a load on the Enhanced Full-Text Search engine
as the system procedure reads the data and updates the text collections.
Depending on the size of this load, the performance hit for issuing
sp_text_notify can be substantial. Because of the performance implications, you
must determine how up-to-date the indexes need to be. If they must be close to
real-time, then issue sp_text_notify frequently (as often as every 5 seconds).
However, if your indexes do not need to be that current, you may want to wait
until the system is not active before you issue sp_text_notify.

Note You cannot issue sp_text_notify from within a transaction.

Configuring multiple Enhanced Full-Text Search
engines

For tables that are used frequently, you can improve performance by placing
the text indexes for these tables on separate Enhanced Full-Text Search
engines. Performance improves because users can spread their queries over a
number of Enhanced Full-Text Search engines, instead of sending all queries
to a single engine. Each Adaptive Server can connect to multiple Enhanced
Full-Text Search engines, but each Enhanced Full-Text Search engine can
connect to only one Adaptive Server.

Creating multiple Enhanced Full-Text Search engines at start-up
If you are initially creating multiple Enhanced Full-Text Search engines, you
can edit the installtextserver script so that it includes all of those Enhanced Full-
Text Search engines. See “Editing the installtextserver script” on page 15.

Adding Enhanced Full-Text Search engines
You can add Enhanced Full-Text Search engines after your initial start-up by
issuing sp_addserver from isql:

sp_addserver server_name [, server_class [,
physical_name]]

CHAPTER 7 Performance and Tuning

User’s Guide 85

where:

• server_name is the name used to address the server on your system (in this
case, the Enhanced Full-Text Search engine).

• server_class identifies the category of server being added. For the
Enhanced Full-Text Search engine, the value is “sds”.

• physical_name is the name in the interfaces file used by the server
server_name.

For more information, see sp_addserver in the Reference Manual.

For example, to add a Enhanced Full-Text Search engine named BLUE, enter:

sp_addserver BLUE, sds, BLUE

After you configure and start the Enhanced Full-Text Search engine, you can
use the following syntax to see if you can connect to the Enhanced Full-Text
Search engine from the Adaptive Server:

server_name...sp_show_text_online

For example, to connect to a server named BLUE, enter:

BLUE...sp_show_text_online

Configuring additional Enhanced Full-Text Search engines
Each Enhanced Full-Text Search engine requires its own:

• Interfaces file entry

• Configuration file

All Enhanced Full-Text Search engines use the same database (named text_db
by default) for storing text index metadata and the same vesaux and vesauxcol
tables.

Multiple users
The following tips may help avoid deadlocks with multiple users:

1 Make sure Adaptive Server is using the same number of connections as the
Enhanced Full-Text Search. 100 is the default.

File Descriptors and Enhanced Full-Text Search

86 Enhanced Full-Text Search Specialty Data Store

sp_configure "user connections", 100

2 Make sure the vesaux, vesauxcol and text_events tables (in the model, or
in each of your new databases) are using row-level locking.

For existing tables: alter table table_name lock datarows

For new tables: create table ... lock datarows

3 For large batches of commands, try to break them into smaller
transactions.

4 If deadlocks still occur, increase the number of locks available to Adaptive
Server, and adjust the row lock promotion settings. See the System
Administration Guide.

File Descriptors and Enhanced Full-Text Search
Enhanced Full-Text Search makes extensive use of file descriptors when
executing searches. With concurrent searches and large text indexes, this may
cause a connection to receive this error message:

ERRORMSG, Error (): Available files (-1) less than min
5

This message indicates that the Enhanced Full-Text Search process has run out
of file descriptors, based on the limit for the process. If you see this error
message, raise the process limit for file descriptors for the Enhanced Full-Text
Search process.

 max_session_fd limits the number of file descriptors an Enhanced Full-Text
Search session can allocate. You can use this in situations where the file
descriptors limit cannot be raised.

The max_session_fd defaults to 0, which means that each session is limited
only by the Enhanced Full-Text Search process file descriptors limit. The
minimum setting for max_session_fd is 5.

If you are seeing the error message above and you cannot raise the file
descriptor limit for the Enhanced Full-Text Search, the best way to gauge how
to set this parameter is to take the ((max file descriptors) - 20)/(max concurrent
connections).

For example, if the file descriptors limit is set to 1024 and the maximum
numberof concurrent connections to the Enhanced Full-Text Search is 50:

CHAPTER 7 Performance and Tuning

User’s Guide 87

((1024) - 20)/50 =~ 20

The more available file descriptors to an Enhanced Full-Text Search session,
the better.

Because the maximum number of file descriptors that each Enhanced Full-Text
Search session uses is being limited, performance may be decreased. Sybase
recommends that you use max_session_fd carefully.

You must restart the Enhanced Full-Text Search process for max_session_fd
changes to take effect.

File Descriptors and Enhanced Full-Text Search

88 Enhanced Full-Text Search Specialty Data Store

User’s Guide 89

C H A P T E R 8 Verity Topics

This chapter is reproduced with permission from Verity. It is provided to
give Enhanced Full-Text Search users insight into Verity Topics.

What are topics?
A topic is a grouping of information related to a concept, or a subject area.
Topics provide a convenient means by which you can encapsulate
knowledge, and make it available to end users as a shared resource. By
adding topics to your Verity application, users can more easily perform
searches over the subject matter which the topics represent.

Topic Page
What are topics? 89

Using a topic outline file 90

Making topics available 91

Knowledge bases of topics 91

Structure of topics 93

Maximum number of topics 96

Verity query language 97

Sample topic outlines 102

Operator reference 104

Modifier reference 113

Weights and document importance 115

Topic scoring and document importance 121

Designing topics 124

Preparing your topic design 124

Topic design strategies 126

Designing the initial topic 128

Using a topic outline file

90 Enhanced Full-Text Search Specialty Data Store

Topics are combined to form knowledge bases that represent a catalog of
knowledge that users can tap into when performing searches. Knowledge bases
offer users the ability to find the information they want without having to
compose sophisticated queries using complex syntax.

Topic organization
Topics organize groups of related search criteria in a format similar to that of
an outline. Operators and modifiers act as the glue that joins related groups of
search criteria. You can create topics as independent units, or as units with
relationships to other topics in a hierarchical structure.

Weight assignments
You can even give some groups of search criteria more weight than other
groups of search criteria in a topic’s structure. Assigning weight to search
criteria affects the importance of documents selected in a search; the closer a
document is to the top of the results list, the more important, or relevant, the
document is to the search criteria. A search criteria weight is a number between
0.01 and 1.00. The position of a selected document in the results list can help
you determine at a glance how relevant the document is compared to the search
criteria.

Using a topic outline file
You can compose topics by creating a topic outline file.

A topic outline file is an ASCII text file in a structured format that contains
topic definitions. A topic outline file might appear as follows:

$Control:1
art <Accrue>
*performing-arts <Accrue>
**0.80 "ballet"
**0.50 "drama"
**0.50 ’dance’
**0.80 "opera"
**0.80 "symphony"
**0.90 "chamber music"

CHAPTER 8 Verity Topics

User’s Guide 91

**"Isaac Stern"
*film <Accrue>
**directors <Filter>
/definition="title CONTAINS Truffaut"
*visual-arts <Accrue>
literature <Accrue>
philosophy <Accrue>
language <Accrue>
history <Accrue>
$$

You can create a topic outline file with any text editor.

Making topics available
The topics you make available to users must exist within a topic set that is
generated using the mktopics utility. Verity topic sets generated by mktopics can
be used by any Verity application. A single topic set supports a maximum of
20,000 topic definitions, and the exact number of topics allowed for one topic
set depends on the Verity query language used to define them.

Setup process
Making topics available to users is a three-step process, as outlined below.

1 Create topic definitions using a topic outline file.

2 Generate a topic set. You can create a topic set using the mktopics utility.
The mktopics utility creates the topic set and can also index the topics over
a specific collection.

3 Import the topic set to the Enhanced Full-Text Search engine.

Knowledge bases of topics
This section discusses the principle features of knowledge bases, and the
organization format used to define topics for them.

The following aspects of topic knowledge bases are covered:

Knowledge bases of topics

92 Enhanced Full-Text Search Specialty Data Store

• Combining topics into a knowledge base

• The structure of topics

• The relationship between topics and subtopics

• Topic types

• Naming topics

Combining topics into a knowledge base
A topic is simply a grouping of information related to a concept, or a subject
area. A knowledge base is a grouping of these concepts called topics.
Combining topics into a knowledge base provides users with the ability to look
up concepts saved as topics in a convenient fashion.

The subject area of a topic is typically identified by the topic’s name. In the
example below, the subject of the topic is performing-arts. This topic is
composed of two structural elements, its name, performing-arts, and its
evidence topics, ballet, musical, dance, opera, symphony, and drama.

Operators and modifiers act as the glue that joins related evidence topics.
Operators represent logic to be applied to evidence topics. This logic defines
the qualifications of the kinds of documents you want to find. Modifiers apply
further logic to evidence topics. For example, a modifier can specify that
documents containing an evidence topic not be included in the list of results.

CHAPTER 8 Verity Topics

User’s Guide 93

A topic’s structure becomes more sophisticated as topics are added to it. In the
next example, the topic film has been added to the structure to form what is
now the top-level topic, art. In this structure, performing-arts and film are
subtopics of the topic art.

Sophisticated topics are composed of top-level topics, subtopics, and evidence
topics. These elements determine the related subject areas of a topic. Typically,
a knowledge base consists of several top-level topics. Subtopics and evidence
topics can be used by multiple top-level topics.

Structure of topics
The structure of topics affects how the topic is interpreted during search
processing. Designing topics so that they accurately express a concept involves
defining a topic structure with the components described below.

Structure of topics

94 Enhanced Full-Text Search Specialty Data Store

Top-level topics
Top-level topics are the highest topics defined in a topic structure. Top-level
topics represent the subject areas you want a Verity search agent to find. In the
example below you could think of literature, philosophy, languages, history,
and art as top-level subtopics that comprise the top-level topic, liberal-arts.

Subtopics
Subtopics form the levels between top-level topics and evidence topics. The
name of a subtopic should identify the subject area that its subtopics or
evidence topics combine to describe. For example, the subtopic visual-arts
includes several related words, or evidence topics, as shown below:

CHAPTER 8 Verity Topics

User’s Guide 95

Evidence topics
Evidence topics are the lowest units of a topic structure. Evidence topics are
strings, made up of combinations of alphanumeric characters. An evidence
topic can contain up to 128 alphanumeric characters.

Topic and subtopic relationships
Each topic and its associated subtopics form a hierarchical parent and child
relationship. In the example below, the subtopics performing-arts, film, visual-
arts, and video are children of the art topic. The art topic itself is a child of the
liberal-arts topic. The liberal-arts topic could in turn be a child of successively
higher parent topics within the structure.

When you use a topic to perform a search, the subject area defined by the topic
includes its subtopics, their subtopics, and so on, down to the evidence topics
of the structure. Topics that are not direct descendants of the topic you use are
not included in the search.

Maximum number of topics

96 Enhanced Full-Text Search Specialty Data Store

In the example above, for instance, a search using the film topic would cause
the Verity search engine to find documents containing information on film,
motion pictures, movies, and art films. In this example, the search would not
find documents related to the performing-arts, visual-arts, or video topics since
these topics are not children, of the film topic. However, if the art topic was
used, the search would find documents related to all the art topic’s children,
which includes performing-arts, film, visual-arts, and video.

Maximum number of topics
A single topic set representing a knowledge base can consist of as many as
20,000 topics. This includes top-level topics, subtopics, and evidence topics.
Topics containing as many as 1,000 subtopics may exceed memory limitations
when used in a search.

Topic naming issues
• A topic name can contain up to 128 alphanumeric characters, including

hyphens and underscores.

• Topic names and evidence topics are normally case-insensitive. You can
name a evidence topic using all caps, as in APPLE, initial caps, as in
Apple, or all lower-case, as in apple. Case is not considered when a search
is performed. Thus, if your evidence topic is entered as APPLE, the Verity
search engine selects documents containing “APPLE”, “Apple”, or
“apple”.

You can, however, use the CASE modifier to specify that case match the
entry of a evidence topic.

CHAPTER 8 Verity Topics

User’s Guide 97

Verity query language
This section describes the Verity Query Language, consisting of operators and
modifiers that you can use to create topics. Operators represent logic to be
applied to search elements which can be combined to create a topic. This logic
defines the qualifications of the kinds of documents you want to find.
Modifiers apply further logic to search elements. For example, a modifier can
specify that a search element be case-sensitive.

The information in this section includes the following:

• Query language summary

• Operator precedence rules

• Sample topic outlines

• Operator reference

• Modifier reference

Query language summary
The Verity Query Language consists of operators and modifiers. Both
operators and modifiers represent logic to be applied to a search element. This
logic defines the qualifications a document must meet to be retrieved.
Operators are classified by their type, as follows:

• Evidence operators

• Proximity operators

• Relational operators

• Concept operators

• Boolean operators

Modifiers extend the logic applied by operators and are used in combination
with operators.

Verity query language

98 Enhanced Full-Text Search Specialty Data Store

Evidence operators

Evidence operators expand a search word into a list of related words that are
then searched for as well. When you perform a search using an evidence
operator, documents containing one or more occurrences of the words in the
expanded word list are documents containing the word specified, as well as its
synonyms. Documents retrieved using evidence operators are not relevance-
ranked unless you use the MANY modifier. See “MANY modifier” on page
114. Table 8-1 describes each evidence operator.

Table 8-1: Evidence operators

Proximity operators

Proximity operators specify the relative location of specific words in the
document; that is, specified words must be in the same phrase, paragraph, or
sentence for a document to be retrieved. In the case of the NEAR and NEAR/N
operators, retrieved documents are relevance-ranked based on the proximity of
the specified words. When proximity operators are nested, the ones with the
broadest scope should be used first; that is, phrases or individual words can
appear within SENTENCE or PARAGRAPH operators, and SENTENCE
operators can appear within PARAGRAPH operators. Table 8-2 describes each
proximity operator.

Operator name Description

WORD Selects documents that include one or more
instances of a word you specify.

STEM Selects documents that include one or more
variations of the search word you specify.

THESAURUS Selects documents that contain one or more
synonyms of the word you specify.

WILDCARD Selects documents that contain matches to a
character string containing variables.

SOUNDEX Selects documents that include one or more words
that “sound like,” or whose letter pattern is similar
to, the word specified.

NEAR/N Expands the search to include the word you enter
plus words that are similar to the query term. This
operator performs “approximate pattern matching”
to identify similar words.

CHAPTER 8 Verity Topics

User’s Guide 99

Table 8-2: Proximity operators

Relational operators

Relational operators search document fields (such as AUTHOR) that have
been defined in the collection. These operators perform a filtering function by
selecting documents that contain specified field values. The fields that are used
with relational operators can contain alphanumeric characters. Documents
retrieved using relational operators are not relevance-ranked, and you cannot
use the MANY modifier with relational operators.

When creating topics, relational operators are always used in conjunction with
the special FILTER operator. See the example under the topic “visual-arts” in
“Sample Topic Outlines” later in this section for the proper syntax.

A number of relational operators are available for numeric and date
comparisons, including the following: = (equals), > (greater than), >= (greater
than or equal to), < (less than), <= (less than or equal to).

A number of relational operators are available for text comparisons, including
the following.

Operator name Description

IN Selects documents that contain specified values in
one or more document zones. A document zone
represents a region of a document, such as the
document’s summary, date, or body text.

PHRASE Selects documents that include a phrase you
specify. A phrase is a grouping of two or more
words that occur in a specific order.

SENTENCE Selects documents that include all of the words
you specify within a sentence.

PARAGRAPH Selects documents that include all of the search
elements you specify within a paragraph.

NEAR Selects documents containing specified search
terms within close proximity to each other.

NEAR/N Selects documents containing two or more words
within N number of words of each other, where N
is an integer.

Verity query language

100 Enhanced Full-Text Search Specialty Data Store

Table 8-3: Relational operators

Concept operators

Concept operators combine the meaning of search elements to identify a
concept in a document. Documents retrieved using concept operators are
relevance-ranked. Table 8-4 describes each concept operator.

Table 8-4: Concept operators

Boolean operators

Boolean operators can be assigned to topics to retrieve documents containing
any or all of the children of that topic. Unlike topics created using the concept
operators, Boolean operators do not accept weights. Table 8-5 describes each
Boolean operator.

Operator name Description

CONTAINS Selects documents by matching the word or phrase
you specify with values stored in a specific
document field.

MATCHES Selects documents by matching the character string
you specify with values stored in a specific
document field.

STARTS Selects documents by matching the character string
you specify with the starting characters of the values
stored in a specific document field.

ENDS Selects documents by matching the character string
you specify with the ending characters of the values
stored in a specific document field.

SUBSTRING Selects documents by matching the character string
you specify with a portion of the strings of the values
stored in a specific document field.

Operator name Description

AND Selects documents that contain all of the search
elements you specify.

OR Selects documents that show evidence of at least one
of your search elements.

ACCRUE Selects documents that include at least one of the
search elements you specify.

CHAPTER 8 Verity Topics

User’s Guide 101

Table 8-5: Boolean operators

Modifiers

Modifiers affect the behavior of operators. Table 8-6 describes each modifier.

Table 8-6: Modifiers

Operator precedence rules
The Verity search engine uses precedence rules to determine how operators can
be assigned. These rules state that some operators rank higher than others when
assigned to topics, and affect how document selections are performed.

Table 8-7 describes how precedence rules apply to operators.

Operator name Description

ALL Selects documents that contain all children of a topic.

ANY Selects documents that contain at least one of the
children of a topic.

Operator name Description

CASE Performs a case-sensitive search.

MANY Counts the density of words or phrases in a
document and produces a relevance-ranked score for
the retrieved documents.

NOT Excludes documents that show evidence of the
specified word or phrase.

ORDER Specifies the order in which search elements must
occur.

Sample topic outlines

102 Enhanced Full-Text Search Specialty Data Store

Table 8-7: Precedence rules

To avoid a precedence violation, do not use ANY or ALL in a parent topic
whose child topic includes a concept operator (AND, OR, ACCRUE). Topics
that use ANY or ALL cannot have variable weights assigned to them, so you
cannot use these operators in a parent topic with any child topic that allows
variable weights (such as AND, OR, ACCRUE). Topics using ANY and ALL
limit evaluation to present or not present (a score of 0.00 or 1.00). If the criteria
are met, the children of these topics get an automatic score of 1.00; if the
criteria are not met, the children of these topics get an automatic score of 0.00;
so it is not meaningful to assign these children variable weights such as 0.80.

Sample topic outlines
The following are the same topics as you would create them in a topic outline
file:

Operator Precedence How precedence is determined

AND

OR

ACCRUE

Highest
precedence

The concept operators take the highest
precedence over the other operators.
Thus, subtopics of topics using these
operators can be assigned any of the
operators listed below under
“incremental precedence” or “lowest
precedence.”

ALL

PARAGRAPH

SENTENCE

NEAR

NEAR/N

PHRASE

ANY

Incremental
precedence

(in descending
order)

The proximity operators refer to
incremental ranges that exist within a
document. Subtopics of topics using
these operators can be assigned their
next lowest operator in the precedence
order. Thus, a phrase takes precedence
over a word; a sentence takes
precedence over a phrase or a word;
and a paragraph takes precedence over
a sentence, a phrase, or a word.

WORD

STEM

SOUNDEX

WILDCARD

THESAURUS

Lowest
precedence

The evidence operators reside at the
lowest level in a topic structure.
Because evidence operators are used
with words contained in documents,
these operators all have the same
precedence.

CHAPTER 8 Verity Topics

User’s Guide 103

$Control:1
art <Accrue>
*performing-arts <Or>
**0.80 "drama"
**0.50 "theater"
**0.80 ’dance’
*film <And>
**0.90 "cinema"
**0.90 "documentary"
**newsreel <Filter>
/definition="DATE >= 05/01/96"
*film-makers <Accrue>
**"Woody Allen"
*film-making <Paragraph>
**"direct"
**"produce"
*visual-arts <Accrue>
**sculpture <In>
/zonespec="title"
**painters <Filter>
/definition="Title MATCHES Famous Painters"
**<Thesaurus>
/wordtext="paint"
literature <Accrue>
*novels <Near>
**0.80 "Proust"
**0.80 "Remembrance" <Case>
*american-novel <Sentence>
**"American"
**"novel"
history <Accrue>
*<Wildcard>
/wordtext="histor*"
music <Accrue>
*jazz
**"bebop"
**<Not> "fusion"
*classical
**"Italian opera"
$$

Operator reference

104 Enhanced Full-Text Search Specialty Data Store

Operator reference
Each operator is listed below alphabetically. Examples for many of these
operators can be found in the topic outline in the previous section.

ACCRUE operator
Selects documents that include at least one of the search elements you specify.
Valid search elements are two or more words or phrases. Selected documents
are relevance-ranked.

The ACCRUE operator scores selected documents according to the presence
of each search element in the document using a “the more, the better”
approach: the more search elements found in the document, the better the
document’s score. Several examples of the ACCRUE operator appear in the
sample outline file in “Sample topic outlines” on page 102.

ALL operator
Selects documents that include all of the search elements you specify. Unlike
the ACCRUE operator, you cannot assign weights when you use the ALL
operator.

AND operator
Selects documents that contain all of the search elements you specify.
Documents selected using the AND operator are relevance-ranked. The
example in “Sample Topic Outlines” shows how the AND operator might be
used with the topic “film.” In the example, only those documents that contain
both search words and a date greater than or equal to 05/01/96 are selected and
ranked according to their score.

ANY operator
Selects documents include at least one of the search elements you specify.
Unlike the ACCRUE operator, you cannot assign weights when you use the
ANY operator.

CHAPTER 8 Verity Topics

User’s Guide 105

CONTAINS operator
Selects documents by matching the word or phrase you specify with values
stored in a specific document field. When you use the CONTAINS operator,
you specify the field name to search, and the word or phrase to search for.

With the CONTAINS operator, the words stored in a document field are
interpreted as individual, sequential units. You may specify one or more of
these units as search criteria. To specify multiple words, each word must be
sequential and contiguous, and must be separated by a blank space. Use
CONTAINS with the FILTER operator.

The syntax for CONTAINS is the same as that for MATCHES. See the example
for MATCHES under the topic “visual arts” in “Sample topic outlines” on page
102. The example assumes that the field TITLE has been created for the
collection.

The CONTAINS operator does not recognize non-alphanumeric characters.
The CONTAINS operator interprets non-alphanumeric characters as a space
and treats the separated values as individual units. For example, if you have
defined a slash (/) as a valid character, and you enter search criteria that include
this character, as in OS/2, “OS” and “2” are treated as individual units.

The CONTAINS operator does not refer to the style.lex file for the definition
of which characters are included in a word.

ENDS operator
Selects documents by matching the character string you specify. Use ENDS
with the FILTER operator. The syntax for ENDS is the same as that for
MATCHES. See the example for MATCHES under the topic “visual arts” in
“Sample topic outlines” on page 102. The example assumes that the field
TITLE has been created for the collection.

= (EQUALS) operator
Selects documents whose document field values are exactly the same as the
search string you specify. Use EQUALS with the FILTER operator. The syntax
for EQUALS is the same as that for GREATER THAN OR EQUAL TO. See
the example for GREATER THAN OR EQUAL TO under the topic “film” in
“Sample topic outlines” on page 102. The example assumes that the field
DATE has been created for the collection.

Operator reference

106 Enhanced Full-Text Search Specialty Data Store

FILTER operator
The special FILTER operator is used in conjunction with the relational
operators to do field searches. See the example under the topic “visual-arts” in
“Sample topic outlines” on page 102 for the proper syntax.

> (GREATER THAN) operator
Selects documents whose document field values are greater than the search
string you specify. Use GREATER THAN with the FILTER operator. The
syntax for GREATER THAN is the same as that for GREATER THAN OR
EQUAL TO. See the example for GREATER THAN OR EQUAL TO under
the topic “film” in “Sample topic outlines” on page 102. The example assumes
that the field DATE has been created for the collection.

>= (GREATER THAN OR EQUAL TO) operator
Selects documents whose document field values are greater than or equal to the
search string you specify. Use GREATER THAN OR EQUAL TO with the
FILTER operator. See the example under the topic “film” in “Sample topic
outlines” on page 102. The example assumes that the field DATE has been
created for the collection.

< (LESS THAN) operator
Selects documents whose document field values are less than the search string
you specify. Use LESS THAN with the FILTER operator. The syntax for LESS
THAN is the same as that for GREATER THAN OR EQUAL TO. See the
example for GREATER THAN OR EQUAL TO under the topic “film” in
“Sample topic outlines” on page 102. The example assumes that the field
DATE has been created for the collection.

CHAPTER 8 Verity Topics

User’s Guide 107

<= (LESS THAN OR EQUAL TO) operator
Selects documents whose document field values are less than or equal to the
search string you specify. Use LESS THAN OR EQUAL TO with the FILTER
operator. The syntax for LESS THAN OR EQUAL TO is the same as that for
GREATER THAN OR EQUAL TO. See the example for GREATER THAN
OR EQUAL TO under the topic “film” in “Sample topic outlines” on page
102. The example assumes that the field DATE has been created for the
collection.

IN operator
Selects documents that contain specified values in one or more document
zones. A document zone represents a region of a document, such as the
document’s summary, date, or body text. The IN operator only works if
document zones have been defined in your collections. If you use the IN
operator to search collections for which zones are not defined, no documents
will be selected. In addition, the zone name you specify must match the zone
names defined in your collections. Consult your collection administrator to
determine which zones have been defined for specific collections. The example
in “Sample topic outlines” on page 102 shows how IN might be used with the
word “sculpture” and the TITLE zone.

MATCHES operator
Selects documents by matching the character string you specify with values
stored in a specific document field. When you use the MATCHES operator,
you specify the field name to search, and the word, phrase, or number to search
for.

Unlike the CONTAINS operator, the search criteria you specify with a
MATCHES operator must match the field value exactly for a document to be
selected. With the MATCHES operator, any occurrence of a search string that
appears as a portion of a value is not selected; only values matching the entire
search string are selected.

You can use question marks (?) to represent individual variable characters
within a string, and asterisks (*) to match multiple variable characters within a
string.

Operator reference

108 Enhanced Full-Text Search Specialty Data Store

Use MATCHES with the FILTER operator. The example in “Sample topic
outlines” on page 102 shows how MATCHES might be used with the phrase
“famous painters” and the TITLE field. The example assumes that the field
TITLE has been created for the collection.

NEAR operator
Selects documents containing specified search terms within close proximity to
each other. Document scores are calculated based on the relative number of
words between search terms. For example, if the search expression includes
two words, and those words occur next to each other in a document (so that the
region size is two words long), then the score assigned to that document is 1.00.
Thus, the document with the smallest region containing all search terms always
receives the highest score. Documents whose search terms are not within 1000
words of each other are not selected, since the search terms are probably too far
apart to be meaningful within the context of the document.

The NEAR operator is similar to the other proximity operators in the sense that
the search words you enter must be found within close proximity of one
another. However, unlike other proximity operators, the NEAR operator
calculates relative proximity and assigns scores based on its calculations.

The example in “Sample topic outlines” on page 102 shows how NEAR might
be used with the topic “novels.”

NEAR/N operator
Selects documents containing two or more words within N number of words of
each other, where N is an integer. Document scores are calculated based on the
relative distance of the specified words when they are separated by N words or
less. Documents containing the specified words separated by more than N
words are not selected. For example, if the search expression NEAR/5 is used
to find two words within five words of each other, a document that has the
specified words within three words of each other is scored higher than a
document that has the specified words within five words of each other.

The N variable can be an integer between 1 and 1,024, where NEAR/1 searches
for two words that are next to each other. If N is 1,000 or above, you must
specify its value without commas, as in NEAR/1000.

CHAPTER 8 Verity Topics

User’s Guide 109

The NEAR/N operator is similar to the other proximity operators in the sense
that the search words you enter must be found within a close proximity of one
another. However, unlike other proximity operators, the NEAR/N operator
assigns scores based on relative proximity.

OR operator
Selects documents that show evidence of at least one of your search elements.
Documents selected using the OR operator are relevance-ranked. The example
in “Sample topic outlines” on page 102 shows how you might use OR with the
topic “performing-arts.”

PARAGRAPH operator
Selects documents that include all of the search elements you specify within a
paragraph. Valid search elements are two or more words or phrases. You can
specify search elements in a sequential or a random order. Documents are
retrieved as long as search elements appear in the same paragraph. The
example in “Sample topic outlines” on page 102 shows you how you might use
PARAGRAPH with the topic “film-making.”

PHRASE operator
Selects documents that include a phrase you specify. A phrase is a grouping of
two or more words that occur in a specific order. You must use the PHRASE
operator when you enter more than one word in the evidence field. Words with
the PHRASE operator are displayed in double quotes. The example in “Sample
topic outlines” on page 102 shows “Woody Allen” and “Italian opera” as uses
of the PHRASE operator.

SENTENCE operator
Selects documents that include all of the words you specify within a sentence.
You can specify search elements in a sequential or a random order. Documents
are retrieved as long as search elements appear in the same sentence. The
example in “Sample topic outlines” on page 102 shows how you how you
might use SENTENCE with the topic “american-novel.”

Operator reference

110 Enhanced Full-Text Search Specialty Data Store

SOUNDEX operator
Selects documents that include one or more words that “sound like,” or whose
letter pattern is similar to, the word specified. Words have to start with the same
letter as the word you specify to be selected. For example, when you use
SOUNDEX with “sale,” the documents selected will include words such as
“sale,” “sell,” “seal,” “shell,” “soul,” and “scale.” Documents are not
relevance-ranked unless the MANY modifier is used.

STARTS operator
Selects documents by matching the character string you specify with the
starting characters of the values stored in a specific document field. Use
STARTS with the FILTER operator. The syntax for STARTS is the same as that
for MATCHES. See the example for MATCHES under the topic “visual arts”
in “Sample topic outlines” on page 102. The example assumes that the field
TITLE has been created for the collection.

STEM operator
Selects documents that include one or more variations of the search word you
specify. Words with the STEM operator are displayed in single quotes. In the
example in “Sample Topic Outlines,” the word “dance” is used with the STEM
operator. Documents selected will therefore include words such as “dances,”
“danced,” and “dancing,” as well as “dance.”

SUBSTRING operator
Selects documents by matching the character string you specify with a portion
of the strings of the values stored in a specific document field. The characters
that comprise the string can occur at the beginning of a field value, within a
field value, or at the end of a field value. The syntax for SUBSTRING is the
same as that for MATCHES. See the example for MATCHES under the topic
“visual arts” in “Sample Topic Outlines.” The example assumes that the field
TITLE has been created for the collection.

CHAPTER 8 Verity Topics

User’s Guide 111

THESAURUS operator
Selects documents that contain one or more synonyms of the word you specify.
For example, when you use the word “altitude” with the THESAURUS
operator, the documents selected will include words such as “height” and
“elevation.” Documents are not relevance-ranked unless the MANY modifier
is used.

TYPO/N operator
The TYPO/N operator expands the search to include the specified word plus
words that are similar. The optional N variable specifies the maximum number
of errors between the query and the matched term. For example, TYPO mouse
returns documents that include words such as “house,” “louse,” and “moose.”

WILDCARD operator
Selects documents that contain matches to a character string containing
variables. The WILDCARD operator lets you define a search string with
variables, which can be used to locate related word matches in documents. The
example in “Sample topic outlines” on page 102 shows how you might use the
string “histor*” to search for words such as “history,” “historical,” and
“historian.” Documents are not relevance-ranked unless the MANY modifier
is used.

Using wildcard special characters
You can use the following wildcard characters to represent variable portions of
search strings with the WILDCARD operator.

Table 8-8: Wildcard Special Characters

Character Function

? Specifies one of any alphanumeric character, as in ?an, which locates “ran,” “pan,” “can,” and
“ban.” It is not necessary to specify the WILDCARD operator when you use the question
mark. The question mark is ignored in a set ([]) or in an alternative pattern ({ }).

Operator reference

112 Enhanced Full-Text Search Specialty Data Store

Searching for nonalphanumeric characters
Remember that you can search for nonalphanumeric characters only if the
style.lex file used to create the collections you are searching is set up to
recognize the characters you want to search for. Consult your collection
administrator for information.

Searching for wildcard characters as literals

The wildcard characters listed above are interpreted as wildcard characters, not
literal characters, unless they are delimited by a backslash (\). If you want a
wildcard character to be interpreted as a literal in a wildcard string, you must
precede the character with a backslash. For example, to match the literal
asterisk (*) in a wildcard string, you delimit the character as follows:

<WILDCARD> a*

Searching for special characters as literals

The following nonalphanumeric characters perform special, internal functions,
and by default are not treated as literals in a wildcard string:

• comma ,

• left and right parentheses ()

 * Specifies zero or more of any alphanumeric character, as in corp*, which locates “corporate,”
“corporation,” “corporal,” and “corpulent.” It is not necessary to specify the WILDCARD
operator when you use the asterisk, and you should not use the asterisk to specify the first
character of a wildcard string. The asterisk is ignored in a set ([]) or in an alternative pattern
({ }).

 [] Specifies one of any character in a set, as in <WILDCARD> ‘c[auo]t‘, which locates “cat,”
“cut,” and “cot.” Note that you must enclose the word which includes a set in backquotes (`),
and there can be no spaces in a set.

{ } Specifies one of each pattern separated by a comma, as in <WILDCARD> ‘bank{s,er,ing}‘,
which locates “banks,” “banker,” and “banking.” Note that you must enclose the word which
includes a pattern in backquotes (`), and there can be no spaces in a set.

 ^ Specifies one of any character not in the set, as in <WILDCARD> ‘st[^oa]ck‘, which excludes
“stock” and “stack” but locates “stick” and “stuck.” Note that the caret (^) must be the first
character after the left bracket ([) that introduces a set.

- Specifies a range of characters in a set, as in <WILDCARD> ‘c[a-r]t‘, which locates every
three-letter word from “cat” to “crt.”

Character Function

CHAPTER 8 Verity Topics

User’s Guide 113

• double quotation mark “

• backslash \

• at sign @

• left curly brace {

• left bracket [

• less than sign <

• backquote `

To interpret special characters as literals, you must surround the whole
wildcard string in backquotes (`). For example, to search for the wildcard string
“a{b”, you surround the string with backquotes, as follows:

<WILDCARD> `a{b`

To search for a wildcard string that includes the literal backquote character (`),
you must use two backquotes together and surround the whole wildcard string
in backquotes (`), as follows:

<WILDCARD> `*n``t`

You can only search on backquotes if the style.lex file used to create the
collections you are searching is set up to recognize the backquote character.
Consult your collection administrator for information.

WORD operator
Selects documents that include one or more instances of a word you specify.
Words with the WORD operator are displayed in double quotes. The example
in “Sample topic outlines” on page 102 displays many instances of the WORD
operator.

Modifier reference
Modifiers further specify the behavior of operators. For example, you can use
the CASE modifier with an operator to specify that the case of the search word
you enter be considered a search element as well. Modifiers include CASE,
MANY, NOT, and ORDER, which are described below.

Modifier reference

114 Enhanced Full-Text Search Specialty Data Store

CASE modifier
Use the CASE modifier with the WORD or WILDCARD operator to perform
a case-sensitive search, based on the case of the word or phrase specified.

By default, documents containing any occurrences of a search word or phrase
are retrieved regardless of case. To use the CASE modifier, you simply enter
the search word or phrase as you wish it to appear in retrieved documents – in
all uppercase letters, in mixed uppercase and lowercase letters, or in all
lowercase letters. The example in “Sample topic outlines” on page 102 shows
how you might use the word “Remembrance” with the CASE modifier to refer
to the first word of Proust’s novel, Remembrance of Things Past.

MANY modifier
Counts the density of words, stemmed variations, or phrases in a document,
and produces a relevance-ranked score for retrieved documents. The more
occurrences of a word, stem, or phrase proportional to the amount of document
text, the higher the score of that document when retrieved. Because the MANY
modifier considers density in proportion to document text, a longer document
that contains more occurrences of a word may score lower than a shorter
document that contains fewer occurrences.

The MANY modifier can be used with the following operators: WORD,
WILDCARD, STEM, SOUNDEX, PHRASE, SENTENCE, PARAGRAPH
and THESAURUS.

The MANY modifier cannot be used with AND, OR, ACCRUE, or relational
operators.

NOT modifier
Use the NOT modifier with a word or phrase to exclude documents that show
evidence of that word or phrase. The example in “Sample topic outlines” on
page 102shows how you might use the NOT modifier to retrieve documents
that mention “bebop” but not “fusion.”

CHAPTER 8 Verity Topics

User’s Guide 115

ORDER modifier
Use the ORDER modifier to express the order in which search elements must
occur. If search values do not occur in the specified order in a document, the
document is not selected. Always place the ORDER modifier just before the
operator.

You can only use the ORDER modifier with the operators ALL,
PARAGRAPH, SENTENCE, and NEAR/N.

Weights and document importance
This section describes assigning weights to search criteria in topics, and the
affect of weights on selected documents. The specific information covered
includes:

• Which operators accept weights

• How weights affect importance

• Assigning weights

• Topic scoring and document importance

Topic weights
When processing a search agent, the Verity search engine calculates a score for
each selected document behind the scenes. A document score can be in the
range from 1.0 to 0.01. The higher a document’s score, the more relevant it is.
Using the score assignments for documents selected by a search agent, Verity
applications can present relevance-ranked results in descending order to
application users.

The ranking of documents is determined by the elements which comprise your
search criteria. Document ranking can be affected depending on whether the
search criteria includes topics, and whether topics include weights.

Weights and document importance

116 Enhanced Full-Text Search Specialty Data Store

When creating topics, you can assign weights to the topic structure to indicate
the relative importance of specific aspects of the topic definition. For example,
you may be interested in two related subjects, but one subject is more important
than another. You do not have to assign weights when you compose topics
because default weights are assigned as appropriate when a topic set is indexed.
However, by assigning weights you can fine-tune the importance of things you
are looking for.

Which operators accept weights
Weights are used in conjunction with operators to compute scores for parent
and child topics during a search. The weight you assign to a topic child can be
a number between 0.01 and 1.00. A child’s weight indicates its importance
relative to the other children that have been defined for its parent. The higher a
child’s weight, the more important that child is considered to be with respect to
its siblings.

Weights can only be assigned to the children of topics that use the concept
operators, as follows:

• AND

• OR

• ACCRUE

Topics that use the proximity operators SENTENCE and PARAGRAPH,
cannot be assigned a weight. These operators assume a simple “yes” or “no”
presence for their children.

If a topic assigned a proximity operator is, in turn, the child of a topic which
has been assigned a concept operator, such as the AND operator, that child can
be assigned a weight.

It is not mandatory that you assign weights to the children of a topic just
because the operator can accept weighted children. When weights are not
assigned, the child has an automatic weight assignment based on its operator.
Children of topics using AND and OR operators assume a weight of 1.00, and
children of topics using the ACCRUE operator assume a weight of 0.50. If
these operators are changed – for example, if an OR operator is changed to an
ACCRUE operator – the weights of children that have not been specifically
assigned a weight change accordingly. Thus, if an unweighted child of an AND
topic has an assumed weight of 1.00, this assumed weight changes to 0.50 if
the operator is changed to ACCRUE.

CHAPTER 8 Verity Topics

User’s Guide 117

If you assign a variable weight to a topic child, then change the operator used
with the parent to one that does not accept weighted children, such as the
SENTENCE operator. The Verity search engine automatically assumes a
weight of 1.00 while this operator is in effect. If the operator is subsequently
changed to one which accepts variable-weighted children, the previously-
assigned variable weights become effective once again.

How weights affect importance
When you assign a weight to the child of a topic that uses a concept operator,
you specify the relative contribution of that child to the overall score produced
by a topic. The higher the weight you assign to the child, the higher selected
documents that contain that child appear in the list of results. Thus, weights
directly affect the importance, or ranking, of selected documents.

For example, assume you have the following topic:

The evidence topics 80286 and 80386 (which describe the microprocessors
used in PC products) have an automatic weight assignment of 1.00. The
evidence topics 486, 386, and 286 have a relatively high probability of
referring to their parent topic, so these evidence topics are assigned weights of
0.80. The evidence topic clone may or may not refer to PC clones at all;
therefore, this evidence topic is assigned a weight of 0.40.

Weights and document importance

118 Enhanced Full-Text Search Specialty Data Store

A search agent using this topic and its assigned weights might produce the
following scores for the matched documents:

If you change the weights of each evidence topic, the importance of your
selection results are affecte, as well. In this example, if you change the weights
of the evidence topic 486 to 0.60, the evidence topic 386 to 0.45, the evidence
topic 286 to 0.35, and the evidence topic clone to 0.20, your selected document
scores change as follows:

Assigning weights
When you assign a weight to a child, keep in mind that the weight you use
reflects the importance of a child to its parent topic. The matched documents
are ranked by importance to the search; thus, your selection results are directly
affected by the weights you assign. If you change a weight, your selection
results change as well.

Example:

CHAPTER 8 Verity Topics

User’s Guide 119

The topic boeing-people includes three weighted children, binder, shrontz, and
woodard, as shown below.

These subtopics are assigned various weights, as follows: the child binder is
assigned a weight of 0.80, since this child is considered to be the most
important of the three. The subtopic hitsman is assigned a “median” weight of
0.50, since this child is reasonably important with respect to the other two
children. The subtopic johnson is assigned a low weight of 0.30, since this
child is considered to be the least important with respect to the other children.

When the topic boeing-people is used for a search, the Verity search engine
assumes that if the phrase “Paul Binder” is located within a document, there is
a high probability that the document is relevant to a search that uses the topic
boeing-people. Documents that contain the phrase “Frank Shrontz” are
reasonably relevant to this search; documents that contain the phrase “Ron
Woodard” are the least relevant.

Because the topic boeing-people has been assigned the ACCRUE operator, the
documents displayed at the top of the results list are those that contain the
greatest number of children; therefore all documents with references to all
three people are given the most importance. Documents that contain only one
name will be selected in an order that reflects the weights of each child. Thus,
because the binder child has the highest weight, documents that include only
one individual are ranked by those that refer to Paul Binder first, followed by
Frank Shrontz, and finally Ron Woodard.

Weights and document importance

120 Enhanced Full-Text Search Specialty Data Store

Automatic weight assignments
When you create a child, the Verity search engine automatically assigns a
default weight of 0.50 for children of topics which use the ACCRUE operator.
A weight of 1.00 is assigned automatically to children of topics that use the
AND or OR operators. These default weights can be manually adjusted up or
down, as described in “Changing weights” on page 120. When you create a
evidence topic off of a topic that uses a proximity operator, default weight of
1.00 is assigned, and it cannot be changed.

Tips for assigning weights
When initially assigning weights, start with a weight of 0.50 for children of
ACCRUE topics, and 1.00 for children of all other topics.

When assigning weights to children of topics that use the ACCRUE operator,
you may select more relevant results if the children do not have overly high
weights. For example, assigning all of the children of an ACCRUE topic
weights of 1.00 causes all documents to have equal importance, regardless of
how many of the children are present within the documents. The Verity search
engine assigns equal importance to all documents containing only one child as
well as for documents that contain all children, so you cannot distinguish
between these documents when you view the selection results.

Assign weights between 0.80 and 0.20 for the best selection results.

Changing weights
Once you have assigned weights to children, you can test these weights by
running a search using the parent topics to see if the documents you want are
selected. If you find that you need to change the weights, you can edit the
existing weight assigned to that subtopic or evidence topic. When you edit
topic definitions in the topic outline file, you must rebuild the topic set using
mktopics. For complete information about using mktopics, see your Verity
application’s administration guide.

CHAPTER 8 Verity Topics

User’s Guide 121

Topic scoring and document importance
When you use a topic to perform a search, the search agent starts its analysis
by considering the evidence topics for that topic. If the evidence topic is
present, it is given 1.00 score and is considered relevant to the search. If the
evidence topic is absent, it is given a 0.00 score and is considered irrelevant to
the search. If the evidence topics are weighted, the scores of the evidence topics
are multiplied by the weights, then combines the resulting products in a manner
specified by the operator of the parent topic. If this parent topic is, in turn, the
child of another topic which is being searched, its score is multiplied by its
assigned weight, and the resulting product is combined with the products of its
siblings in a manner specified by the operator assigned to the parent topic. This
process continues until the parent topic is reached.

The operators you use determine how parent and child scores contribute to the
importance of a selected document. As each child in the topic is given an
importance score, the following calculations are performed:

• If a topic uses an ACCRUE operator, the highest ranking result is taken
from the products of each child’s weight and score, then adds a little to the
score for each child that is present in the document.

• If a topic uses an AND operator, the products of each child’s own weight
and score are compared, and the lowest product (the minimum) is taken as
the score.

• If a child uses an OR operator, the products of each child’s weight and
score are compared, and highest product (the maximum) is taken as the
score.

• If a child uses a proximity operator (PHRASE, SENTENCE, or
PARAGRAPH), or a relational operator, the child receives a score of 1.00
if the topic is present, and a score of 0.00 if the topic is not present.

• An evidence topic receives a score of 1.00 if it is present, and no score of
0.00 if it is not present.

Once the final calculations for the parent topic have been performed, a matched
document becomes available to the Verity application so that users can view it
with its highlights.

The following example provides a breakdown of how evidence topics and
subtopics are calculated to illustrate the process by which importance is
assigned to selected documents.

Topic scoring and document importance

122 Enhanced Full-Text Search Specialty Data Store

In the following illustration, the parent topic BOEINGCO is being used in a
search.

The evidence topics of each subtopic are first checked against the documents
to determine if they are present. Evidence topics that are present are assigned
scores of 1.00; evidence topics that are absent are assigned a score of 0.00.

The operators at the next level of a topic structure are used to combine the
scores of the evidence topics. Because the operatorsat this level are all
proximity operators (thus, no weights assigned), they all produce scores that
are either 0.00 or 1.00.

For example, assume that the following evidence topics appear within a given
document:

• The evidence topic “Boeing Computer Services” appears within a phrase.

• The evidence topic “Boeing Defense” appears within a paragraph. The
evidence topic “Boeing Company” appears within the document.

• The evidence topic “Ron Woodard” appears within a phrase.

The other evidence topics are only partially present, or are absent. Table 8-9
shows how the presence or absence of these evidence topics affect topic scores.
The score for each topic reflects the presence of all related evidence topics,
based on the operators that have been assigned to the parent topics.

CHAPTER 8 Verity Topics

User’s Guide 123

Table 8-9: Evidence topics and scores

Given the above topic scores, the operators at the next level of topics in the
structure are calculated as follows:

• The subtopic boeing-comps, which uses the AND operator, has a score of
0.50.

• The subtopic boeing-people, which uses the ACCRUE operator, has a
score of 0.50.

Finally, the topic BOEINGCO, which uses the OR operator, compares the
products of each child’s weight and score, and takes the highest product (the
maximum) as its score. The selected document is thus scored as 0.50.

This process is repeated for each document. The documents are sorted by the
scores of the BOEINGCO topic, and displayed in ranked order.

Topic Evidence topic
Evidence topic
present

Evidence topic
absent

Topic
score

boeing-comp-services boeing computer services 1

1

1

1

boeing-aerospace boeing aerospace electronics 1

1

1

0

boeing-defense boeing defense 1

1

1

boeing-label boeing company 1

1

1

paul-binder paul binder 1

1

0

frank-shrontz frank shrontz 1

1

0

ron-woodard ron woodard 1

1

1

Designing topics

124 Enhanced Full-Text Search Specialty Data Store

Designing topics
This section discusses methodologies you can use to design effective topics.
You can apply the methodologies and strategies described here whether you
plan to compose topics using a topic outline file or one of the Verity clients. The
information in this section includes the following:

• Preparing your topic design

• Topic design strategies

• Designing the initial topic

Preparing your topic design
As you prepare your topic design, consider the naming conventions you will
use. Your topic names should help identify the subject matter of the kinds
documents you want to find.

To ensure the best search performance, use alphanumeric characters (A
through Z, and 0 through 9) for topic names. You can also use foreign
characters whose ASCII value is greater than or equal to 128, as well as these
symbols: $ (dollar sign), % (percentage sign), ^ (circumflex), + (plus sign), -
(dash), and _ (underscore). Using other nonalphanumeric characters, may
cause misinterpretation of the topic name and affect results.

Understanding your information needs
You should have an understanding of the subject areas to be addressed by your
topic design and be familiar with the search requirements of users at your site.
The next step is to understand your informational needs, as well as the
document types to be searched.

In planning your initial topic design, keep in mind that you are developing a
strategy, and the topics you define are the tactics you will use to implement that
strategy.

As you develop your strategy, try to answer the following questions:

• What do you want to gain by using a Verity search agents?

• What issues are to be solved by Verity search agents?

CHAPTER 8 Verity Topics

User’s Guide 125

• Who will use search agents?

• What kinds of source material will be used?

• What kinds of searches will be performed?

• How are searches currently being performed?

Consider the topics you define as questions to be asked. Just as you might ask
a reference librarian at your local library for information relating to a subject
area, the topics you create should pose questions when creating Verity search
agents.

When considering your strategy, and how Verity search applications will be
implemented to provide a solution, keep in mind that a topic you design
performs several roles, as follows:

• A librarian

• A research assistant

• An information repository

• A knowledge base

Understanding your documents
To build effective topics, you must have a good understanding of the types of
documents being used as information sources. For example, your documents
may consist of one or more of the following types of information:

• Letters

• Memos

• Reports

• Articles

Collect representative samples of the types of documents to be searched. Note
common characteristics you will need to apply to the topics you design. For
example, if your documents contain important terms, acronyms, or jargon,
highlight them so you can create topics that search for this text.

As you collect your document samples, identify their sources – whether they
are internal sources, such as internal auditing reports; or external sources, such
as e-mail messages from outside organizations. This information enables you
to define the subtopics for top-level topics.

Topic design strategies

126 Enhanced Full-Text Search Specialty Data Store

Using scanned data
If your documents are scanned into electronic files using an OCR facility,
determine whether the document files will be reviewed for accuracy prior to
indexing. If scanned files are reviewed, consult with reviewers to ensure that
standards are applied to terms, acronyms, and jargon. If scanned files are not
reviewed, note possible variations that may occur. You can develop a topic that
uses an OR operator to include variations.

Categorizing document samples
Once you have collected your representative document samples and have
performed an initial analysis of their contents, you may want to categorize
them further. The categorization process can help you to define the top-level
topics and children contained in your topic design, and help determine the
operators and weights to assign.

Following are categorization examples:

• Geographic location

• Sit

• Project

• Subject area

• Date

The categorization process can help you understand the common, meaningful
elements which exist in your information sources. For example, if you
categorize your information by date (such as a month), it makes sense to create
topics that use relational operators, such as EQUALS.

Topic design strategies
Once you have an understanding of your documents, you are ready to choose
a topic design strategy. There are two topic design strategies

• The “top-down” strategy considers the major subject classifications first,
followed by classifications of increasing detail.

CHAPTER 8 Verity Topics

User’s Guide 127

• The “bottom-up” strategy considers the detailed areas first, followed by
classifications which group each detailed area by a more generalized
subject.

Top-down design
A top-down strategy assumes you are designing a topic from the top-level
topics down through the individual evidence topics of each subtopic. To design
from the top down, you must adopt a taxonomy, or scientific classification
approach, to creating a topic, as follows:

• Top-level topics – use general headings to identify the subject area

• Subtopics – use more specific headings to identify the primary groupings
within the subject area, as well as topics which are increasingly more
specific.

• Evidence topics – use important terms, acronyms, or jargon, to define the
subject.

A top-down design works best when you have clearly-defined requirements.
This approach is also ideal if your set of searchable documents is constantly
growing or changing. With this strategy, for example, you are likely to define
subjects which may not yet be evident in your information sources. Keep in
mind that you can always add new topics, if you find that a number of new
documents contain information which are not identified in your topic design.

If your information sources (that is, your set of indexed documents) changes
constantly, specific subjects within documents may be missed, especially at the
lowest levels. Periodically analyze the information being selected by your
topics to ensure that topics critical to your application are current, and the
appropriate information is being found.

Bottom-up design
A bottom-up strategy assumes you are designing a topic from the individual
evidence topics up through the top-level topics that will be defined. With this
strategy, your topic design objective is to select documents containing
information similar to your lower-level topics.

Designing the initial topic

128 Enhanced Full-Text Search Specialty Data Store

When you use a bottom-up design, you can start with a document which
contains a good representative sample of the words or phrases you want to
search for. Then you can group these words by successively higher
classifications.

A bottom-up design works best when you have documents that are
representative of many other documents that contain similar information. This
approach is also useful when your information sources are not subject to many
changes or additions.

Topic designs based on the contents of specific documents may miss related
subject areas in other documents. For example, if a name is used in the sample
document and that name changes in other documents, the new name may be
missed in searches.

In addition, the bottom-up strategy implies that your topic design is tuned to
the specific document set being used to develop your topics. These documents
may not be representative of all documents contained in your information
sources. Periodically review the effectiveness of your searches.

Designing the initial topic
When you have decided whether to use the top-down approach or the bottom-
up approach for your initial topic design, create a topic outline to identify the
topic levels to be defined.

Outlining a topic
Making a topic outline can help you determine how information will be
categorized at the various levels within a topic. You can use a topic outline with
the top-down or the bottom-up design approach, but it is particularly useful for
the top-down approach. We recommend that every topic you build be
developed as an outline first, so that you can understand the relationships
between topics and subtopics, and organize them to be the most useful.

A topic outline helps you understand how information might be searched for
by the people who use Verity search agents at your site. You can use a topic
outline to fine-tune the information specified by topics and subtopics to
pinpoint document selection. Try to do the following as you develop a topic
outline:

CHAPTER 8 Verity Topics

User’s Guide 129

• Identify the specific areas of information people will use when performing
searches.

• Identify any related subtopics which may be grouped as children under a
parent topic .

• Consider the initial level of detail to be covered by your topic design.

Keep the scope of your topic outline relatively small to begin with. A smaller,
simpler topic outline is easier to define, and you can always add additional
information later. As you develop your topic outline, determine how many
levels your topic design will include.

Top-down topic outline example
Developing a top-down topic outline involves three steps.

• Establishing an information hierarchy

• Establishing individual search categories

• Establishing the topics to be built

As you work through these steps, meet with the people who use Verity search
agents at your site to develop a topic outline that best meets their search needs,
as described below.

Establishing an information hierarchy

Talk to the people at your site to learn what types of documents contain the
information they need.

For example, assume you are developing a topic design for people in the
medical industry to find information relating to current drug testing. Based on
discussions with the people who will use Verity search agents at your site, you
learn that the following types of documents are prime sources of current drug
testing information:

• Research reports

• Product literature

These documents form the information sources to be searched by Verity search
agents.

Designing the initial topic

130 Enhanced Full-Text Search Specialty Data Store

Establishing individual search categories

Review the documents that will form the information sources at your site. Look
for ways to categorize documents.

In our example, a review of the medical research reports and product literature
shows information contained in these documents is divided into several
categories. You determine that the following categories will be used to define
the top-level topics in your topic design:

• Lab reports

• Clinical trials, data, or research

• Product literature

Establishing the topics to be built

Discuss categories you define with the people who create Verity search agents
at your site to determine the most important concepts that selected documents
should contain, and to determine the top-level topics you need to develop for
each category.

For example, you determine that the category “clinical trials” includes the
following top-level topics:

CHAPTER 8 Verity Topics

User’s Guide 131

Within these top-level topics, for example, the following subtopics are
identified by subject-area experts:

Designing the initial topic

132 Enhanced Full-Text Search Specialty Data Store

Once these topics are classified, you consult the people who use Verity search
agents at your site to determine subtopics. Following is an example of
subtopics classified as children for the topic procedural-aspects:

CHAPTER 8 Verity Topics

User’s Guide 133

As the topic outline is defined, you consult the people who use Verity search
agents at your site to ensure the topics select meaningful documents. In the next
example, a topic called drug-names enables the users at your site to search
clinical trials data for drugs, based on their names.

Bottom-up topic outline example
Developing a bottom-up topic outline involves three steps.

• Identifying the subtopics that will form the lowest levels of the topic
design

• Categorizing related subtopics into higher-level topics

• Establishing the top-level topic classifications

As you work through these steps, meet with the people who create Verity
search agents at your site to develop a topic outline that best meets your search
needs, as described below.

Designing the initial topic

134 Enhanced Full-Text Search Specialty Data Store

Identifying low-level topics

Find a document you can use as a model whose information is representative
of other documents you want to find.

For example, assume you are developing a topic design to find information on
the computer industry. As a start, you build a topic that searches for documents
related to Apple Computer and related products.

You use the following sample as a model document whose information is
representative of other documents you want to find:

This document makes you decide you want to locate other documents which
refer to “Appletalk” and “Macintosh,” so you define two parent topic names,
apple-software and apple-hardware.

You decide you want to add additional evidence topics to select documents
containing related information, such as “Macintosh,”

CHAPTER 8 Verity Topics

User’s Guide 135

“Mac Classic,” “Quadra,” and “Power Mac.” In addition, you decide you want
to include the evidence topics “AppleTalk” “MacPaint,” “MacWrite,” and
“MacDraw,” as related software products. You assign these evidence topics to
your apple-hardware and apple-software topics, as follows:

Finally, you want to combine these topics into the topic apple-products, as
follows:

Categorizing related subtopics

Discuss subtopics with the people who use Verity search agents at your site to
determine if other subtopics exist that can be logically grouped in a category.

Designing the initial topic

136 Enhanced Full-Text Search Specialty Data Store

In our example, some of the people who use Verity search agents are interested
in finding information on personnel at Apple Computer, and others are
interested in finding any documents that refer to Apple Computer. In the
example below, a logical group of topics addresses several aspects of Apple
Computer:

Establishing top-level topics

Determine whether other top-level topics are necessary to find related
information.

CHAPTER 8 Verity Topics

User’s Guide 137

In the following example, a new topic, dec, is developed for another computer
company, Digital Equipment Corporation. This topic was assigned a top-level
topic and contains subtopics similar to those defined for the apple topic, as
shown below.

Verity® and TOPIC® are registered trademarks of Verity, Inc.

Designing the initial topic

138 Enhanced Full-Text Search Specialty Data Store

User’s Guide 139

A P P E N D I X A System Procedures

This appendix describes the Sybase -supplied system procedures used for
updating and getting reports from system tables. Table A-1 lists the
system procedures included with the Enhanced Full-Text Search engine.

Table A-1: System procedures

Procedure Description

sp_check_text_index Reports or fixes consistency problems in Enhanced Full-Text Search
index and source tables.

sp_clean_text_events Removes processed entries from the text_events table.

sp_clean_text_indexes Removes text indexes that are not associated with a table.

sp_create_text_index Creates an external text index.

sp_drop_text_index Drops text indexes.

sp_help_text_index Displays text indexes.

sp_optimize_text_index Runs the Verity optimization routines.

sp_redo_text_events Changes the status of entries in the text_events table and forces re-
indexing of the modified table.

sp_refresh_text_index Adds an entry to the text_events table reflecting updates to the
corresponding source table.

sp_show_text_online Displays information about databases or indexes that are currently
online.

sp_text_cluster Displays or modifies clustering options.

sp_text_configure Displays or modifies Enhanced Full-Text Search engine
configuration parameters.

sp_text_dump_database Makes a backup copy of the text indexes in a database and optionally
dumps the text_db and current databases.

sp_text_kill Terminates all connections to a specific text index.

sp_text_load_index Restores text indexes from a backup.

sp_text_notify Notifies the Enhanced Full-Text Search engine that the text_events
table has been modified.

sp_text_online Makes a database available to Adaptive Server.

sp_check_text_index

140 Enhanced Full-Text Search Specialty Data Store

sp_check_text_index
Description Reports or fixes consistency problems in the Enhanced Full-Text Search index

and source tables.

Syntax sp_check_text_index server, "index_name", "id_column", "fixit"

Parameters server
is the name of the text server.

index_name
is the name of the text server.

id_column
is the source identity or primary key column name.

fixit
 if FALSE, just reports problems. If TRUE, does not report but repairs
problems.

Examples sp_check_text_index "textsvr", "text.i_text", "id",
"false"

Lists problems on the server named textsvr with the column name text.i_text.

Usage • Before using sp_check_text_index, you must issue sp_dboption “select
into”, true

• This procedure:

• Generates an sp_refresh_text_index insert for entries in the source
table that do not have a matching entry in the index.

• Generates an sp_refresh_text_index delete for entries in the index
table that have no source table entry.

• Generates an sp_refresh_text_index delete for each extra entry where
duplicate index entries exist.

• To determine the index duplicates, select all of the ID values from the
index table into a temporary table. If the collection has more than 64K ID
values, you must change the batch_blocksize configuration parameter from
its default of 0 to 65536 to enable blocked reading of the returned Verity
information. If you do not do this, Enhanced Full-Text Search attempts to
real all ID values in one read and fail with a Verity error of “-27.”

Messages None.

Permissions Any user can execute sp_check_text_index.

APPENDIX A System Procedures

User’s Guide 141

sp_clean_text_events
Description Removes processed entries from the text_events table.

Syntax sp_clean_text_events [up_to_date]

Parameters up_to_date
 the date and time through which all processed entries will be deleted.

Examples sp_clean_text_events "01/15/98:17:00"

Removes data entered on or before January 15, 1998 at 5:00 p.m.

Usage • If you do not specify the up_to_date parameter, all entries having a date
less than or equal to up_to_date and whose status are set to processed is
deleted.

• If you ommit up_to_date, all entries whose status is set to processed is
deleted.

• Remove entries from the text_events table only after you have backed up
the collection associated with the text index.

• sp_text_dump_database automatically runs.

Messages None.

Permissions Any user can execute sp_clean_text_events.

See also sp_text_dump_database

sp_clean_text_indexes
Description Removes indexes from the vesaux table that are not associated with a table.

Syntax sp_clean_text_indexes

Parameters None.

Examples sp_clean_text_indexes

Usage • This procedure reads entries from the vesaux and vesauxcol tables,
verifying that both the source table and the corresponding index table
exist. If either is missing, the index is dropped.

Messages • Fetch resulted in an error.

• Unable to drop object definition for index_name!

sp_create_text_index

142 Enhanced Full-Text Search Specialty Data Store

Permissions Any user can execute sp_clean_text_indexes.

sp_create_text_index
Description Creates a text index.

Syntax sp_create_text_index server_name, index_table_name,
table_name, “batch”, column_name
[, column_name ...]

Parameters server_name
 is the name of the Enhanced Full-Text Search engine.

index_table_name
is the name of the index table. index_table_name has the form
[dbname.[owner.]]table, where:

• dbname is the name of the database containing the index table.

• owner is the name of the owner of the index table.

• table is the name of the index table.

table_name
is the name of the source table containing the text being indexed.
table_name has the form [dbname.[owner.]]table.

batch
the “batch” operator (must be in quotes) tells the Enhanced Full-Text Search
to reallocate every session after each batch sent to the VDK.

column_name
 is the name of the column indexed by the text index.

Examples sp_create_text_index "blue", "i_blurbs", "blurbs", " ",
"copy"

Creates a text index and an index table named i_blurbs on the copy column of
the blurbs table.

Usage • Up to 16 columns can be indexed in a single text index.

• Columns of the following datatypes can be indexed: char, varchar, nchar,
nvarchar, text, image, date, time, datetime, smalldatetime, int, smallint, and
tinyint.

• The content of option_string is not case sensitive.

APPENDIX A System Procedures

User’s Guide 143

• option_string uses a null string (" ") to specify “No Options.”

• Assign the value “empty” to option_string to create a text index that you
will immediately drop. This creates the Verity collection directory and the
style files, but does not populate the collections. For example, when you
configure an individual table for clustering, you create the text index and
immediately drop it. After you edit the style.prm file, you re-create the text
index. See “Editing individual style.prm files” on page 29.

• sp_create_text_index writes entries to the vesaux table and tells the
Enhanced Full-Text Search engine to create the text index.

• Execution of sp_create_text_index is synchronous. The Adaptive Server
process executing this system procedure remains blocked until the index
is created. The time required to index large amounts of data may take as
long as several hours to complete.

• When you create a text index on two or more columns, each column in the
text index is placed into its own document zone. The name of the zone is
the name of the column. The zones can be used to limit your search to a
particular column. For more information, see “in” on page 53.

• Do not rename an index after creating.

Messages • Cannot run sp_create_text_index from within a transaction.

• ‘column_name’ cannot be NULL.

• Column ‘column_name’ does not exist in table ‘table_name.’

• Index table mapping failed – text index creation aborted.

• Invalid text index name – ‘index_name’ already exists.

• ‘parameter’ is not in the current database.

• Server name ‘server_name’ does not exist in sysservers.

• ‘table_name’ does not exist.

• ‘table_name’ is not a valid object name.

• Table ‘table_name’ does not have an identity column – text index creation
aborted.

• Text index creation failed.

• User ‘user_name’ is not a valid user in the database.

Permissions Any user can execute sp_create_text_index.

sp_drop_text_index

144 Enhanced Full-Text Search Specialty Data Store

sp_drop_text_index
Description Drops the index table and text indexes.

Syntax sp_drop_text_index "table_name.index_table_name"
[,"table_name.index_table_name"...]

Parameters table_name
is the name of the table associated with the text indexes you are dropping.
table_name has the form [dbname.[owner.]]table, where:

• dbname is the name of the database containing the table.

• owner is the name of the owner of the table.

• table is the name of the table.

index_table_name
is the name of the index table and text index you are dropping.
index_table_name has the form [dbname.[owner.]]index.

Examples sp_drop_text_index "blurbs.i_blurbs"

Drops the index table and text index associated with the blurbs table.

Usage • First, sp_drop_text_index issues a remote procedure call (RPC) to the
Enhanced Full-Text Search engine to delete the Verity collection. Then, it
removes the associated entries from the vesaux and vesauxcol tables, drops
the index table, and removes the index table object definition.

• Up to 255 indexes can be specified in a single sp_drop_text_index request.

• If database and owner are not specified, the current owner and database
are used.

Messages • Cannot run sp_drop_text_index from within a transaction.

• Index ‘index_name’ is not a text index.

• ‘parameter_name’ is not a valid name.

• Server name ‘server_name’ does not exist in sysservers.

• Unable to drop index table ‘table_name’. This table must be dropped
manually.

• User ‘user_name’ is not a valid user in the ‘database_name’ database.

• vs_drop_index failed with code ‘code_name’.

Permissions Any user can execute sp_drop_text_index.

APPENDIX A System Procedures

User’s Guide 145

sp_help_text_index
Description Displays a list of text indexes for the current database.

Syntax sp_help_text_index [index_table_name]

Parameters index_table_name
is the name of the text index you want to display.

Examples Example 1

sp_help_text_index

Displays all indexes.

Example 2

sp_help_text_index "i_blurbs"

Displays information about the text index i_blurbs.

Usage • sp_help_text_index is available only with Enhanced Full-Text Search
Specialty Data Store.

• If you the index_table_name parameter, information about that text index
is displayed. This information includes the name of the text index, the
name of the Verity collection for the index, the name of the source table,
the name of the IDENTITY or primary key column, and the name of the
Enhanced Full-Text Search engine that created the index.

• If index_table_name is omitted, a list of all text indexes in the current
database is displayed

Messages • No text indexes found in database ‘database_name.’

• Text index ‘index_name’ does not exist in database ‘database_name.’

• Object must be in the current database

Permissions Any user can execute sp_help_text_index.

sp_optimize_text_index
Description Performs optimization on a text index.

Syntax sp_optimize_text_index index_table_name

sp_redo_text_events

146 Enhanced Full-Text Search Specialty Data Store

Parameters index_table_name
is the name of the text index you want to optimize. index_table_name has
the form [dbname.[owner.]]table, where:

• dbname is the name of the database containing the index table. If
present, the owner or a placeholder is required.

• owner is the name of the owner of the index table.

• table is the name of the index table.

Examples sp_optimize_text_index "i_blurbs"

Optimizes the text index i_blurbs to improve query performance.

Usage • sp_optimize_text_index is available only with Enhanced Full-Text Search
Specialty Data Store.

• This system procedure causes the Enhanced Full-Text Search engine to
run the specified text index through the Verity optimization routines.

• sp_optimize_text_index is useful for optimizing a text index that has been
updated with Verity optimization disabled (trace flag 11 turned on).

• To enable MaxClean optimization, turn on trace flag 30. This trace flag
should only be used during maintenance since it could take extra time and
interfere with normal usage. MaxClean is a Verity optimization feature
that removes out-of-date collection files.

Messages • ‘index_table_name’ is not in the current database.

• ‘index_table_name’ does not exist.

• Index ‘index_table_name’ is not a text index.

• This procedure is not supported against remote server ‘server_name.’

Permissions Any user can execute sp_optimize_text_index.

See also “Updating existing indexes” on page 79

sp_redo_text_events
Description Changes the status of entries in the text_events table and forces the reindexing

of the modified columns.

Syntax sp_redo_text_events [from_date [,to_date]]

APPENDIX A System Procedures

User’s Guide 147

Parameters from_date
 is the starting date and time in a date range of entries to be modified.

to_date
is the ending date and time in the specified date range of the entries to be
modified.

Examples sp_redo_text_events "01/05/98:17:00", "02/12/98:08:30"

Re-ndexes columns that were modified between January 5, 1998 at 5:00 p.m.
and February 12, 1998 at 8:30 a.m.

Usage • Resets the status to “unprocessed” for all entries in the text_events table
that currently have a status of “processed.” The Enhanced Full-Text
Search engine is notified that a reindex operation is required.

• Useful for synchronizing a text index after a recovery of the Verity
collection from a backup. This procedure is run automatically during
sp_text_load_index.

• If you omit to_date, all entries between from_date and the current date
with a status of “processed” are reset to “unprocessed.”

• If you omit both from_date and to_date, all entries in the text_events table
with a status of “processed” are reset to “un-processed.”

Messages • to_date cannot be specified without from_date.

• You have not specified the full range.

Permissions Any user can execute sp_redo_text_events.

sp_refresh_text_index
Description Records modifications in the text_events table when you change the text

index’s source table data.

Syntax sp_refresh_text_index table_name, column_name, rowid, mod_type

Parameters table_name
is the name of the source table being updated. table_name has the form
[dbname.[owner.]]table, where:

• dbname is the name of the database containing the table.

• owner is the name of the owner of the table.

• table is the name of the table.

sp_show_text_online

148 Enhanced Full-Text Search Specialty Data Store

column_name
is the name of the column being updated.

rowid
is the IDENTITY or primary key column value of the changed row.

mod_type
 specifies the type of the change. Must be insert, update, or delete.

Examples sp_refresh_text_index "blurbs", "copy", 2.000000,
"update"

Records in the text_events table that you have updated the copy column of the
blurbs table. The row you have updated has an id of 2.000000.

Usage • The user maintains the consistency of the text index. You must run
sp_refresh_text_index anytime you update source data that has been
indexed so that the text_events table reflects the change. This keeps the
collections in sync with your source data. The collections are not updated
until you run sp_text_notify.

• You can create triggers that issue sp_refresh_text_index for non-text and
non-image columns. See “Propagating changes to the text index” on page
23.

Messages • Column ‘column_name’ does not exist in table ‘table_name.’

• Invalid mod_type specified (‘mod_type’). Correct values: INSERT,
UPDATE, DELETE.

• Owner ‘owner_name’ does not exist.

• Table ‘table_name’ does not exist.

• ‘table_name’ is not a valid name.

• Text event table not found.

Permissions Any user can execute sp_refresh_text_index.

See also sp_text_notify

sp_show_text_online
Description Displays information about databases or text indexes that are currently online.

Syntax sp_show_text_online server_name [,{INDEXES | DATABASES}]

APPENDIX A System Procedures

User’s Guide 149

Parameters server_name
is the name of the Enhanced Full-Text Search engine to which the request is
sent.

INDEXES | DATABASES
specifies whether the request should contain data about online indexes or
online databases. The default is INDEXES.

Examples Example 1

exec sp_show_text_online KRAZYKAT

Displays all indexes that are currently online in the KRAZYKAT Enhanced
Full-Text Search engine.

Example 2

exec sp_show_text_online KRAZYKAT, DATABASES

Displays all databases that are currently online in the KRAZYKAT Enhanced
Full-Text Search engine.

Usage • sp_show_text_online issues a remote procedure call to the Enhanced Full-
Text Search engine to retrieve information about the indexes or the
databases that are currently online.

• If the results of this procedure do not list a database, use sp_text_online to
bring the desired database online.

Messages • sp_show_text_online failed for server server_name.

• The parameter value ‘value’ is invalid.

• The RPC sent to the server returned a failure return code.

• The second parameter must be INDEXES or DATABASE.

Permissions Any user can execute sp_show_text_online.

See also sp_text_online

sp_text_cluster
Description Displays or changes clustering parameters for the active thread.

Syntax sp_text_cluster server_name, cluster_parameter [, cluster_value]

Parameters server_name
is the name of the Enhanced Full-Text Search engine.

sp_text_cluster

150 Enhanced Full-Text Search Specialty Data Store

cluster_parameter
is the name of the clustering parameter. Values are shown in Table A-2.

cluster_value
is the value you assign to the clustering parameter for the active thread.
Values are shown in Table A-2.

Table A-2: Clustering configuration parameters

Examples Example 1

sp_text_cluster KRAZYKAT, cluster_order, "1"

Changes the cluster_order parameter to 1 for the active thread.

Values for
cluster_parameter Values for cluster_value

cluster_style Specifies the type of clustering to use. Valid values are:

• fixed – generates a fixed number of clusters. The number is set by the
cluster_max parameter.

• coarse – automatically determines the number of clusters to generate, based on
fewer, coarse grained clusters.

• medium – automatically determines the number of clusters to generate, based on
medium-sized clusters.

• fine – automatically determines the number of clusters to generate, based on
smaller, finer-grained clusters.

cluster_max Specifies the maximum number of clusters to generate when cluster_style is set to
fixed. A value of 0 means that the search engine determines the number of clusters
to generate.

cluster_effort Specifies the amount of effort (time) that the search engine should expend on
finding a good clustering. Valid values are:

• effort_default – the search engine spends the default amount of time. You can
also use the Verity term “default” if you enclose it in double quotes (“ ”).

• high – the search engine spends the longest time.

• medium – the search engine spends less time.

• low – the search engine spends the least amount of time.

cluster_order Specifies the order in which to return the rows within the clusters. Valid values are:

• "0" – indicates rows are returned in order of similarity to the cluster center. This
means the first row returned for a cluster is the one that is most prototypical of
the rows in the cluster.

• "1" – indicates that rows are returned in the same relative order in which they
were submitted for clustering. For example, if cluster 1 contains the first, third
and seventh rows found for the query, they will be returned in that relative order
within the cluster.

APPENDIX A System Procedures

User’s Guide 151

Example 2

sp_text_cluster KRAZYKAT, cluster_style

Displays the current value of the cluster_style parameter.

Usage • The Verity clustering algorithm attempts to group similar rows together,
based on the values of the clustering parameters.

• If you specify the cluster_parameter parameter, but omit the the
cluster_value parameter, sp_text_cluster displays the value of the
clustering parameter that is specified.

• sp_text_cluster does not modify the value of the clustering configuration
parameter. The cluster_value is valid only for the thread that is currently
executing. To modify the default values, use sp_text_configure.

• For information on how to request a clustered result set, see “Using
pseudo columns to request clustered result sets” on page 48.

Messages • This procedure is not supported against remote server ‘server_name.’

• The parameter value ‘value’ is invalid.

• sp_text_cluster failed (status = status).

Permissions Any user can execute sp_text_cluster.

See also sp_text_configure

sp_text_configure
Description Displays or changes Enhanced Full-Text Search engine configuration

parameters.

Syntax sp_text_configure server_name [, config_name [, config_value]]

Parameters server_name
is the name of the Enhanced Full-Text Search engine.

config_name
is the name of the configuration parameter to be displayed or modified.

config_value
is the value you assign to the configuration parameter.

Examples Example 1

sp_text_configure KRAZYCAT, backdir, "/data/backup"

sp_text_dump_database

152 Enhanced Full-Text Search Specialty Data Store

Changes the backup destination directory to /data/backup.

Example 2

sp_text_configure KRAZYCAT, backdir

Displays the backup destination directory.

Usage • When you execute sp_text_configure to modify a dynamic parameter:

• The configuration and run values are updated.

• The configuration file is updated.

• The change takes effect immediately.

• When you execute sp_text_configure to modify a static parameter:

• The configuration value is updated.

• The configuration file is updated.

• The change takes effect only when you restart the Enhanced Full-Text
Search engine.

• When issued with no parameters, sp_text_configure displays a report of all
Enhanced Full-Text Search engine configuration parameters and their
current values.

• If you specify the config_name parameter, but omit the config_value
parameter, sp_text_configure displays the report for the configuration
parameter specified.

• For information on the individual configuration parameters, see
“Modifying the configuration parameters” on page 67.

Messages • Configuration value cannot be specified without a configuration option.

• This procedure is not supported against remote server ‘server_name.’

• sp_text_configure failed – possible invalid configuration option
‘config_name.’

Permissions Any user can execute sp_text_configure.

sp_text_dump_database
Description Makes a backup copy of a text index.

APPENDIX A System Procedures

User’s Guide 153

Syntax sp_text_dump_database backupdbs [, current_to] [,
current_with] [, current_stripe01 [, ... [,
current_stripe31]]] [, textdb_to] [, textdb_with] [,
textdb_stripe01 [, ... [, textdb_stripe31]]]

Parameters backupdbs
specifies whether the current database and the text_db database are backed
up before the text index is backed up. Valid values are shown in Table A-3.

Table A-3: Values for backupdbs

current_to
is the to clause of the dump database command for dumping the current
database. Use this only if you specify CURRENT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

current_with
is the with clause of the dump database command for dumping the current
database. Use this only if you specify CURRENT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

current_stripe
is the stripe clause of the dump database command for dumping the current
database. Use this only if you specify CURRENT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

textdb_to
is the to clause of the dump database command for dumping the text_db
database. Use this only if you specify INDEXES_AND_DATABASES for the
backupdbs parameter. Use this only if you specify
TEXT_DB_AND_INDEXES or INDEXES_AND_DATABASES for the
backupdbs parameter.

Value Description

CURRENT_DB_AND_INDEXES Indicates that the current database is backed up before the text
indexes are backed up.

CURRENT_DB_AND_CURRENT_INDEXES Indicates that the current database is backed up before the text
indexes are backed up, and only the indexes associated with
the current database are dumped.

TEXT_DB_AND_INDEXES Indicates that the text_db database is backed up before the text
indexes are backed up.

INDEXES_AND_DATABASES Indicates that the current and text_db databases are backed up
before the text indexes are backed up.

ONLY_INDEXES Indicates that only the text indexes are backed up.

sp_text_dump_database

154 Enhanced Full-Text Search Specialty Data Store

textdb_with
is the with clause of the dump database command for dumping the text_db
database. Use this only if you specify TEXT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

textdb_stripe
is the stripe clause of the dump database command for dumping the text_db
database. Use this only if you specify TEXT_DB_AND_INDEXES or
INDEXES_AND_DATABASES for the backupdbs parameter.

Examples Example 1

sp_text_dump_database ONLY_INDEXES

Only text indexes are backed up.

Example 2

sp_text_dump_database CURRENT_DB_AND_INDEXES, "to ’/data/db1backup’"

The current database is dumped to /data/db1backup before the text indexes are
backed up.

Example 3

sp_text_dump_database @backkupdbs = "TEXT_DB_AND_INDEXES", @textdb_to = "to
’/data/textdbbackup’"

The text_db database is dumped to /data/textdbbackup before the text indexes
are backed up.

Example 4

sp_text_dump_database @backupdbs = "INDEXES_AND_DATABASES", @current_to =
"to ’/data/db1backup’",
@textdb_to = "to ’/data/textdbbackup’"

The current database is dumped to /data/db1backup and the text_db database
is dumped to /data/textdbbackup before the text indexes are backed up.

Usage • The Enhanced Full-Text Search engine concatenates the values of
current_to, current_with, and current_stripe01 to current_stripe31 to
dump database currentdbname and then executes the dump database
command. The output from the execution of the dump database command
is sent to the Enhanced Full-Text Search error log.

• The Enhanced Full-Text Search engine concatenates the values of
textdb_to, textdb_with, and textdb_stripe01 to textdb_stripe31 to the string
“dump database currentdbname” and then executes the dump database
command. The output from the execution of the dump database command
is sent to the Enhanced Full-Text Search error log.

APPENDIX A System Procedures

User’s Guide 155

• All entries in the text_events table that have a “processed” status in the
current database are deleted when all indexes have been backed up.

• The backup files for the Verity collections are stored in the directory
specified in the backDir configuration parameter.

• See references to the configuration paramter backCmd for customizing
backups.

Messages • The parameter value ‘value’ is invalid.

• Server name ‘server’ does not exist in sysservers.

• Attempt to dump database ‘database_name’ failed – use the dump
database command.

• Attempt to backup text indexes on server ’server_name’ failed.

• Attempt to clean text_events in database ‘database_name’ failed (date =
’date’).

• Parameter ’parameter_name’ is required when dumping database
‘database_name’.

• Dumping database ’database_name’ – check Full Text Search SDS error
log for status

.

Permissions Any user can execute sp_text_dump_database.

See also dump_database in the Reference Manual.

sp_text_kill
Description Terminates all connections to a specific text index.

Syntax sp_text_kill index_table_name

sp_text_load_index

156 Enhanced Full-Text Search Specialty Data Store

Parameters index_table_name
is the name of the text index from which all connections are terminated.
index_table_name has the form [dbname.[owner.]]table, where:

• dbname is the name of the database containing the index table. If
present, the owner or a placeholder is required.

• owner is the name of the owner of the index table.

• table is the name of the index table.

Examples sp_text_kill "i_blurbs"

Terminates all existing connections to the text index i_blurbs.

Usage • This system procedure causes the Enhanced Full-Text Search engine to
terminate all connections to the specified index, except for the connection
that initiated the request.

• Attempts to drop a text index that is currently in use will fail. sp_text_kill
can be used to terminate all existing connections so that the index can be
successfully dropped.

Messages • Index ‘index_table_name’ is not a text index.

• This procedure is not supported against remote server ‘server_name.’

• ‘index_table_name’ does not exist.

• Only the System Administrator (SA) may execute this procedure.

Permissions Only user “sa” can execute sp_text_kill.

See also sp_drop_text_index

sp_text_load_index
Description Restores a text index backup.

Syntax sp_text_load_index

Parameters None.

Examples sp_text_load_index

Restores all text indexes in the current database.

APPENDIX A System Procedures

User’s Guide 157

Usage • Run sp_text_load_index after the text_db database and the current database
have been fully recovered.

• sp_text_load_index restores the Verity collections from the most recent
backup. The Enhanced Full-Text Search engine then runs
sp_redo_text_events and sp_text_notify to reapply all entries in the
text_events table since the date and time the index was backed up.

Messages • Server name ‘server_name’ does not exist in sysservers.

• Unable to restore text indexes for server ‘server_name.’

• This procedure is not supported against remote server ‘server_name’

• Update to text_events table in database database_name failed for server
‘server_name’ –text_events not rolled forward.

Permissions Any user can execute sp_text_load_index.

See also sp_redo_text_events; sp_text_notify

sp_text_notify
Description Notifies the Enhanced Full-Text Search engine that the text_events table has

been modified.

Syntax sp_text_notify [{true | false}] [, server_name]

Parameters true
causes the procedure to run synchronously.

false
causes the procedure to run asynchronously.

server_name
 – is the name of the Enhanced Full-Text Search engine you are notifying.

Examples sp_text_notify true

Usage • You must run sp_text_notify after you issue sp_refresh_text_index to inform
the Enhanced Full-Text Search engine that the source tables have been
modified.

• If you do not specify true or false, sp_text_notify runs synchronously.

• If no server name is specified, all Enhanced Full-Text Search engines are
notified.

sp_text_online

158 Enhanced Full-Text Search Specialty Data Store

Messages • Can’t run sp_text_notify from within a transaction.

• Notification failed, server = ‘server_name.’

• Server name ‘server_name’ does not exist in sysservers.

• The parameter value ‘value’ is invalid.

Permissions Any user can execute sp_text_notify.

See also sp_refresh_text_index

sp_text_online
Description Makes a database available for full-text searches to Adaptive Server.

Syntax sp_text_online [server_name], [database_name]

Parameters server_name
is the name of the Enhanced Full-Text Search engine.

database_name
is the name of the database that you are bringing online.

Examples sp_text_online @database_name = pubs2

Makes the pubs2 database available for full-text searches using the Enhanced
Full-Text Search engine.

Usage • If a database is not specified, all databases are brought online for full-text
searches.

• If a server name is not specified, all Enhanced Full-Text Search engines
listed in the vesaux table are notified.

• With the Enhanced Full-Text Search engine, databases are brought online
automatically if the auto_online configuration parameter is set to 1.

Messages • All Databases using text indexes are now online

• Databases containing text indexes on server ‘database_names’ are now
online.

• Server name server_name is now online.

• Server name ‘server_name’ does not exist in sysservers.

• The parameter value ‘value’ is invalid.

• The specified database does not exist.

APPENDIX A System Procedures

User’s Guide 159

• vs_online failed for server ‘server_name.’

Permissions Any user can execute sp_text_online.

sp_text_online

160 Enhanced Full-Text Search Specialty Data Store

User’s Guide 161

A P P E N D I X B Sample Files

This appendix contains the following:

• The text of the default configuration file (textsvr.cfg)

• An overview of the sample_text_main.sql sample script

• A list of all the sample files provided by the Enhanced Full-Text
Search engine

• An overview of the getsend program

Default textsvr.cfg configuration file
;;
; @(#) File: textsvr.cfg 1.17 07/26/99
;
; Full Text Search Specialty Data Store
; Sample Configuration File
;
; The installation procedure places this file in the
; "SYBASE" directory.
;
; Lines with a semi-colon in column 1 are comment lines.
;
; Modification History:
; ---------------------
; 11-21-97 Create file for Full Text Search SDS
; 03-02-98 Add trace flags and config values for
; Enhanced Full Text Search SDS
; 05-26-99 remove references to sds/text
; 07-09-99 added batch block size
; 08-24-99 remove version string and correct copyright
;
;;
;
; copyright (c) 1997, 1999

Default textsvr.cfg configuration file

162 Enhanced Full-Text Search Specialty Data Store

; Sybase, Inc. Emeryville, CA
; All rights reserved.
;
;;
;
; DIRECTIONS
;
; Modifying the textsvr.cfg file:
; -------------------------------
; An installation can run the Text Search SDS product
; as supplied, with no modifications to configuration
; parameters. Default values from the executable program
; are in effect.
;
; The "textsvr.cfg" file is supplied with all configuration
; parameters commented out.
;
; The hierarchy for setting configuration values is:
;
; default value internal to the executable program (lowest)
; configuration file value (overrides default value)
; command line argument (overrides default value and *.cfg file)
;
; Command line arguments are available to override
; settings for these options:
;
; -i<file specification for interfaces file>
; -l<file specification for log file>
; -t (no arg) directs text server to write start-up
; information to stderr (default is DO NOT write start-up information)
;
; To set configuration file parameters, follow these steps:
;
; (1) If changing the server name to other than "textsvr":
; (1A) Copy "textsvr.cfg" to "your_server_name.cfg"
; Example: text_server.cfg
; (1B) Modify the [textsvr] line to [your_server_name]
; Example: [text_server]
; The maximum length of “your_server_name” is 30 characters.
;
; (2) Set any configuration values in the CONFIG VALUES SECTION below.
; Remove the semi-colon from column 1.
;
;;
;
;

APPENDIX B Sample Files

User’s Guide 163

; DEFINITIONS OF TRACE FLAG AND SORT ORDER VALUES
;
; "traceflags" parameter, for text server
; Available "traceflags" values: 1,2,3,4,5,6,7,8,9,10,11,12,13
;
; 1 trace connect/disconnect/attention events
; 2 trace language events
; 3 trace rpc events
; 4 trace cursor events
; 5 log error messages returned to the client
; 6 trace information about indexes
; 7 trace senddone packets
; 8 write text server/Verity api interface records to the log
; 9 trace sql parser
; 10 trace Verity processing
; 11 disable Verity collection optimization
; 12 disable returning of sp_statistics information
; 13 trace backup operations (Enhanced Full Text Search only)
;
; "srv_traceflags" parameter, for Open Server component of text server
; Available "srv_traceflags" values: 1,2,3,4,5,6,7,8
; 1 trace TDS headers
; 2 trace TDS data
; 3 trace attention events
; 4 trace message queues
; 5 trace TDS tokens
; 6 trace open server events
; 7 trace deferred event queue
; 8 trace network requests
;
; "sort_order" parameter
; Available "sort_order" values: 0,1,2,3
; 0 order by score, descending (default)
; 1 order by score, ascending
; 2 order by timestamp, descending
; 3 order by timestamp, ascending
;
;;
;
; CONFIG VALUES SECTION
;
; The "textsvr.cfg" file is supplied with the values commented out.
; To override value(s) in the executable program:
; - Set required value(s) below
; - Remove the semicolon from column 1
;

Default textsvr.cfg configuration file

164 Enhanced Full-Text Search Specialty Data Store

[textsvr]
;min_sessions = 10
;max_sessions = 100
;batch_size = 500
;sort_order = 0
;defaultDb = text_db
;errorLog = textsvr.log
;language = english
;charset = iso_1
;vdkLanguage =
;vdkCharset = 850
;traceflags = 0
;srv_traceflags = 0
;max_indexes = 126
;max_packetsize = 2048
;max_stacksize = 34816
;max_threads = 50
;collDir = <txtsvr directory tree location on UNIX>/collections
;collDir = <txtsvr directory tree location on Win-NT>\collections
;vdkHome = <txtsvr directory tree location on UNIX>/verity
;vdkHome = <txtsvr location on Win-NT>\verity
;interfaces = <$SYBASE location on UNIX>/interfaces
;interfaces = <%SYBASE% location on Win-NT>\ini\sql.ini
;;
;
; The parameters in this section apply only to the Enhanced Full Text Search SDS.
; If defined to a Full Text Search engine they will be ignored.
;
;auto_online = 0
;backDir = <txtsvr directory tree location on UNIX>/backup
;backDir = <txtsvr directory tree location on Win-NT>\backup
;backCmd =
;restoreCmd =
;knowledge_base =
;nocase = 0
;cluster_max = 0
;cluster_order = 0
;cluster_style = Fixed
;cluster_effort = Default
;batch_blocksize = 0
;max_session_fd = 0

APPENDIX B Sample Files

User’s Guide 165

The sample_text_main.sql script
The Enhanced Full-Text Search engine installation copies the
sample_text_main.sql script to the $SYBASE/$SYBASE_FTS/sample/scripts
directory. This script illustrates the following operations:

• Setting up a text index.

• Modifying data and propagating changes to the collections. This includes
inserts, updates, and deletes.

• Dropping a text index.

Execution of this script is not required for installation or configuration; Sybase
supplies the script as a sample.

Before you run the sample_text_main.sql script:

• Your Adaptive Server and Enhanced Full-Text Search engine must be
configured and running.

• Use a text editor to edit the sample_text_main.sql script. Change
“YOUR_TEXT_SERVER” to the name of your Enhanced Full-Text
Search engine in Step 4 in the sample_text_main.sql script.

• Verify that your model database contains a text_events table. If your model
database is not configured this way, you must:

• Modify the sample_text_main.sql script to exit after creating the
database

• Apply the installevent script to the new database. See “Running the
installevent script” on page 17.

• Execute the remainder of the sample script

Direct the script as input to your Adaptive Server. For example, to run the
sample_text_main.sql script on an Adaptive Server named MYSVR:

isql -Ulogin -Ppassword -SMYSVR
-i
$SYBASE/$SYBASE_FTS/sample/scripts/sample_text_main.sq
l -omain.out

When you finish with this sample environment, log in to your Adaptive Server
and drop the sample database. For example:

1> use master
2> go
1> drop database sample_colors_db
2> go

Sample files illustrating Enhanced Full-Text Search engine features

166 Enhanced Full-Text Search Specialty Data Store

You can re-run the sample_text_main.sql necessary.

Sample files illustrating Enhanced Full-Text Search
engine features

The Enhanced Full-Text Search engine supplies a set of sample files for
illustrating text server operations. The files are located in the
$SYBASE/$SYBASE_FTS/sample/scripts directory. Execution of the sample
files is not required for installation, configuration, or operation of a Enhanced
Full-Text Search engine.

Custom thesaurus
The following files illustrate how to set up and use a custom thesaurus:

• sample_text_thesaurus.ctl – is a sample control file.

• sample_text_thesaurus.sql – provides sample queries using the custom
thesaurus created by the sample control file.

Topics
The following files illustrate how to set up and use topics:

• sample_text_topics.otl – is a sample outline file.

• sample_text_topics.kbm – is a sample knowledge base map.

• sample_text_topics.sql – provides sample queries using the defined topics.

Clustering, summarization, and query-by-example
The following files illustrate how to set up and use clustering, summarization
and query-by example:

• sample_text_setup.sql – creates a sample environment.

• sample_text_queries.sql – issues queries against the environment and
drops the environment.

APPENDIX B Sample Files

User’s Guide 167

getsend sample program
The Enhanced Full-Text Search engine includes a program named getsend to
load text or image data from a file into a column defined in Adaptive Server.

The required source and header files, a makefile, and directions for building
and running the program are included in the directory
$SYBASE/$SYBASE_FTS/sample/source.

See the README.TXT file and getsend.c file for information on how to use the
program.

getsend sample program

168 Enhanced Full-Text Search Specialty Data Store

User’s Guide 169

A P P E N D I X C Unicode Support

The Unicode standard, a subset of the International Standards
Organization’s ISO 10646 standard, is an international character set.
Unicode is identical to the Basic Multilingual Plane (BMP) of ISO 10646,
which supports all the major scripts and languages in the world.
Therefore, it is a superset of all existing character sets.

Unicode:

• Provides single-source development. This means you develop an
application once and it can then be localized for multiple locales and
in multiple languages. By using a single unified character set, you do
not have to modify your applications to take into account differences
between character sets, thus reducing development, testing, and
support costs.

• Allows you to mix different languages in the same database. An all-
Unicode system does not require that you design your database to
keep track of the character set of your data.

The Enhanced Full-Text Search engine supports Unicode. To use this
feature, set the charset configuration value to utf8. This contains
everything you need to set up a Unicode-enabled client/server database
system.

To configure the Enhanced Full-Text Search engine to store data in
Unicode format, set the charset configuration value to utf8. See
“Modifying the configuration parameters” on page 67.

Note If you issue wildcard searches against data in Unicode format, turn
on trace flag 15. See “Setting trace flags” on page 73.

170 Enhanced Full-Text Search Specialty Data Store

User’s Guide 171

Symbols
, (comma)

in SQL statements xv
{} (curly braces)

in SQL statements xv
... (ellipsis) in SQL statements xvi
() (parentheses)

in SQL statements xv
[] (square brackets)

in SQL statements xv
< > (angle brackets), enclosing Verity operators in 51

A
accrue operator 50, 52
Adaptive Server

connecting to an Enhanced Full-Text Search engine
1

processing a full-text query 10
and operator 50, 53

with the not modifier 60
angle brackets (< >), enclosing Verity operators in 51
attention events, tracing 73

Open Server 74
auto_online configuration parameter 22, 68, 70, 158

B
backDir configuration parameter 68, 70, 77, 155
backup and recovery 75
backup files

default location of 68, 70
backup operations, tracing 73
batch_blocksize configuration parameter 67
batch_size configuration parameter 67, 69

and performance 82–83
brackets.

See square brackets [] and angle brackets < >

C
case operator modifier 60
case sensitivity

in queries 52
setting for the Enhanced Full-Text Search engine

75
in SQL xvi

character sets
setting the default 71

charset configuration parameter 67, 69
setting the default 71

cis cursor rows configuration parameter 81
cis packet size configuration parameter 82
cluster_effort configuration parameter 49, 68, 70

values for 150
cluster_keywords pseudo column 44, 49
cluster_max configuration parameter 49, 68, 70

values for 150
cluster_number pseudo column 44, 49
cluster_order configuration parameter 49, 68, 70

values for 150
cluster_style configuration parameter 48, 68, 70

values for 150
clustering 48

configuring for all tables 29
configuring for individual tables 29
enabling 27
modifying values of parameters for 149
setting up 48
in a sort specification 47
values of configuration parameters 150
writing queries for 49

collDir configuration parameter 67, 70
collections 6, 76

See also text indexes
backing up 152

Index

Index

172 Enhanced Full-Text Search Specialty Data Store

creating 142
default character set 71
default language 70
disabling optimization 73, 79
displaying the names of 145
dropping 144
location of 6
setting the location of 67
modifying data in 23
optimizing 145
performance issues when updating 83
populating with data 20
and reindexing 146
restoring from backup 75, 77

columns
valid datatypes to index 5

comma (,)
in SQL statements xv

commands in Verity.
See operators (commands)

complement operator 50, 53
Component Integration Services

connecting to an Enhanced Full-Text Search engine 1
configuration file

sample 161
configuration parameters 67–68, 69–70

See also individual configuration parameters
auto_online 158
backDir 77, 155
batch_size parameter and performance 82–83
charset 71
cluster_effort 49, 150
cluster_max 49, 150
cluster_order 49, 150
cluster_style 48, 150
displaying values 151
language 70
max_sessions parameter and performance 83
min_sessions parameter and performance 83
modifying values 151
nocase 75
sort_order 46, 72
srv_traceflags 74
vdkCharset 71
vdkLanguage 70

configuration parameters, Adaptive Server

cis cursor rows 81
cis packet size 82

connecting to an Enhanced Full-Text Search engine 85
connections, number of user 83
conventions

See also syntax
directory paths xiv
used in manuals xv

curly braces ({})
in SQL statements xv

cursor events, logging 73
custom thesaurus 34

and creating the control file 35
and examining the default thesaurus 35
and the mksyd utility 37
and replacing the default thesaurus 37

D
databases

bringing online for full-text searches 22
databases, bringing online

automatically 68, 70
datatypes

and indexing 21
of indexed columns 5, 142

default_Db configuration parameter 68, 70
defining multiple Enhanced Full-Text Search engines

15
delete operations

creating triggers for 23
deletes

and updating the text indexes 8
from the text_events table 141
from the vesaux table 141

document filters 6
document zones

and multiple columns in a text index 22
using with the in operator 53

dump database command
and the sp_text_dump_database system procedure

77, 154

Index

User’s Guide 173

E
ellipsis (...) in SQL statements xvi
Enhanced Full-Text Search engine

changing the name of 15
configuring multiple engines 15, 84–85
connecting to 85
document filters 6
how queries are processed 10
notifying of updates to the text_events table 157
operators 50–60
relationship of components 9
shutting down 66
starting as a service 65
starting for UNIX platforms 63
starting for Windows NT 65–66
starting with Sybase Central 65

Enhanced Full-Text Search Specialty Data Store
components of 5–9

error log file
setting the path name of 68
specifying in the runserver file 64

error logging 73
errorLog configuration parameter 68, 70
events, logging 73–74

F
file descriptors

setting limits 68
filters, document 6

creating 32
and document zones 54

forceplan
and forcing join orders 81

full-text search queries
bringing databases online for 22
and case sensitivity 52
components of 43
processing a 10
and requesting clustered result sets 49
sort order specifications 46–47
and using topics 41
using alternative syntax 52

G
getsend program 167

H
highlight pseudo column 45

I
id pseudo column 7, 45

mapping to the IDENTITY column in the source
table 20

and query optimization 81
IDENTITY columns

adding a unique index 20
adding to a source table 20
adding to existing source table 20
displaying with the text index 145
example of adding 25
joining with the index table 7, 10
in the source table 5

in operator 50, 53
index table

contents of 7
creating 20, 142
dropping 144
and the id column 19
in a query 10
joining with the source table 7

index_any pseudo column 45
and query optimization 81

insert operations
creating triggers for 23

inserts
and updating the text indexes 8

installevent installation script
editing 17
example of using 24
using 17

installtextserver installation script
and creating multiple Enhanced Full-Text Search

engines 84
editing 15
location of 15

Index

174 Enhanced Full-Text Search Specialty Data Store

instsvr.exe utility 66
integrity, maintaining 6
Intelligent Classifier 40
interfaces

tracing calls between Enhanced Full-Text Search engine
and Verity 73

interfaces configuration parameter 68, 70
interfaces file

setting the location of 68, 70
specifying in the runserver file 64

J
join order

ensuring correct 80
joining the source table with the text index 5, 7, 10, 19, 43

and increasing performance of 80

K
/keys modifier 36
knowledge base map

creating 40
defining the location of 41

knowledge_base configuration parameter 41, 68, 70

L
language

setting the default 70–71
language configuration parameter 67, 69

setting the default 70
language events, logging 73
like operator 50, 54

enabling literal text in the QBE specification 27
limits

file descriptors 68
list

keyword 36
logging events using trace flags 73–74

M
maintaining integrity 6
many operator modifier 60
max_docs pseudo column 45

with clustered result sets 49
and increasing query performance 80
and sort orders 72

max_indexes configuration parameter 67, 69
max_packetsize configuration parameter 67, 69
max_session_fd 68, 70
max_sessions configuration parameter 67, 69

and performance 83
max_stacksize configuration parameter 67, 69
max_threads configuration parameter 67, 69
metadata 6
min_sessions configuration parameter 67, 69

and performance 83
mksyd utility

and creating a custom thesaurus 37
and examining the default thesaurus 35

mktopics utility 40
multiple users 85

N
naming the Enhanced Full-Text Search engine 68, 70
near operator 50, 54, 55
near/n operator 50, 55

with the order modifier 61
network requests, tracing 74
nocase configuration parameter 68, 70, 75
not operator modifier 60

O
online databases.

See databases, bringing online
Open Server events, tracing 74
Open Server trace flags 74
operator modifiers

case 60
many 60
not 60
order 61

Index

User’s Guide 175

operators (commands) 50–60
accrue 50, 52
and 50, 53
complement 50, 53
enclosing in angle brackets 51
in 50, 53
like 50, 54
near 50, 54, 55
near/n 50, 55
or 50, 53
paragraph 50, 55
phrase 50, 55
product 50, 56
and relevance-ranking 45–46
sentence 50, 56
stem 50, 56
sum 50, 57
thesaurus 50, 57
topic 50, 58
wildcard 50, 58
word 50, 59
yesno 50, 60

optimization, disabling 73, 79
or operator 50, 53

with the not modifier 60
order operator modifier 61
outline file for topics 39

P
paragraph operator 50, 55

with the many modifier 60
with the order modifier 61

parameters
of a search 7

parentheses ()
in SQL statements xv

performance and tuning
adding a unique index 20
and using multiple Enhanced Full-Text Search

engines 84
disabling text index optimization 79
increasing query performance 80–81
reconfiguring Adaptive Server 81–82
reconfiguring the Enhanced Full-Text Search

engine 82–83
and sp_text_notify 83

phrase operator 50, 55
with the many modifier 60

procedures.
See system procedures

processed events
removing from the text_events table 141

processing full-text searches 10
product operator 50, 56
propagating changes to the collections 8
proxy tables as a source table 6
pseudo columns 7

cluster_keywords 44, 49
cluster_number 44, 49
highlight 45
id 45
in a query 10
index_any 45
max_docs 45, 49
score 45–46
sort_by 45, 46–47, 49
summary 45, 47

Q
QBE specification.

See query-by-example
queries

and pseudo columns 7
queries, full-text search

bringing databases online for 22
and case sensitivity 52
components of 43
ensuring the correct join order 80
increasing performance of 80–81
processing of 10
requesting clustered result sets 49
sort order specifications 46–47
and using topics 41
using alternative syntax 52

query-by-example
configuring for all tables 29
configuring for individual tables 29
enabling 27

Index

176 Enhanced Full-Text Search Specialty Data Store

and the like operator 54

R
ranking documents.

See relevance-ranking
recovery 75

and synchronizing a text index with the source table
146

relevance-ranking 45–46
See also score pseudo column

remote procedure calls
sp_traceoff 74, 80
sp_traceon 74, 80

remote tables as a source table 6
replicating text indexes 23
RPC events, logging 73
RPCs.

See remote procedure calls
runserver file 63

flags for 64

S
sample files

configuration file 161
illustrating clustering 166
illustrating custom thesaurus 35, 166
illustrating query-by-example 166
illustrating summarization 166
illustrating topics feature 39, 166

sample program getsend 167
sample scripts

sample_text_main.sql 19, 23, 165
score pseudo column 8, 45–46

with clustered result sets 49
and default sort order 72
and the many modifier 60
sorting by 47

score values
how Sybase reports 46

scripts, sample
sample_text_main.sql 19, 23, 165

search parameters 7

sentence operator 50, 56
with the many modifier 60
with the order modifier 61

sessions, number of user 83
showplan

and examining join orders 81
shutting down the Enhanced Full-Text Search engine

66
sort orders

and clustered result sets 47, 49
by column 30, 47
in a query 46–47
max_docs and sort order 72
by score 47
setting the default 72
by timestamp 47, 72

sort specifications
setting up a defined column to sort by 30

sort_by pseudo column 45
and requesting a clustered result set 49
and specifying a sort order 46–47
and setting up a defined column as a sort

specification 30
sort_order configuration parameter 46, 68, 70, 72
source tables

adding an IDENTITY column to 19
changes to data 147, 157
contents of 5
and displaying text indexes 145
in a query 10

sp_addserver system procedure 84
sp_check_text_index system procedure 140
sp_clean_text_events system procedure 141
sp_clean_text_indexes system procedure 141
sp_create_text_index system procedure 20, 142–143

creating indexes that use a filter 32
example of using 25
specifying multiple columns 22

sp_drop_text_index system procedure 144
sp_help_text_index system procedure 145
sp_optimize_text_index system procedure 79, 145–

146
sp_redo_text_events system procedure 146–147
sp_refresh_text_index system procedure 147–148

modifying data in the collections 23
running automatically 23

Index

User’s Guide 177

sp_show_text_online system procedure 148–149
sp_statistics system procedure

disabling 73, 80
sp_text_cluster system procedure 149–151
sp_text_configure system procedure 69, 151–152
sp_text_dump_database system procedure 76,

152–155
sp_text_kill system procedure 155–156
sp_text_load_index system procedure 77, 156–157
sp_text_notify system procedure 157, 158

and modifying data in the collections 23
and performance issues 83
and turning off optimization 79

sp_text_online system procedure 22, 158–159
example 26

sp_traceoff remote procedure call 74, 80
sp_traceon remote procedure call 74, 80
SQL parsing, tracing 73
square brackets []

in SQL statements xv
srv_traceflags configuration parameter 68, 70, 74
starting the Enhanced Full-Text Search engine

from Sybase Central 65
on UNIX platforms 63
on Windows NT 65–66
as a service 65

startserver utility 63
start-up

and setting the number of user connections 83
start-up commands

and the runserver file 63
on Windows NT 65

stem operator 50, 56
with the many modifier 60

style.dft file 32
style.prm file

editing an existing collection’s 143
editing for an existing collection 29
editing the master 28
and enabling Verity functionality 27
location of an existing collection 29
location of master 29

style.ufl file 30, 32
style.vgw file 30, 32
sum operator 50, 57
summarization

configuring for all tables 29
configuring for individual tables 29
enabling 27
writing queries requesting 47

summary pseudo column 45
enabling before using 27
using 47

Sybase Central, starting from 65
symbols in SQL statements xv
synonym list for a custom thesaurus 35
synonyms

statement 36
syntax conventions, Transact-SQL xiv
syntax, alternative Verity 52
sysservers table

adding Enhanced Full-Text Search engines 84
system procedures

See also individual system procedures
sp_check_text_index 140
sp_clean_text_events 141
sp_clean_text_indexes 141
sp_create_text_index 142–143
sp_drop_text_index 144
sp_help_text_index 145
sp_optimize_text_index 145–146
sp_redo_text_events 146–147
sp_refresh_text_index 147–148
sp_show_text_online 148–149
sp_text_cluster 149–151
sp_text_configure 151–152
sp_text_dump_database 152–155
sp_text_kill 155–156
sp_text_load_index 156–157
sp_text_notify 157–158
sp_text_online 158–159

system tables
updating 139

T
TDS data, tracing 74
TDS headers, tracing 74
TDS tokens, tracing 74
text documents, types of 6
text indexes 76, 77

Index

178 Enhanced Full-Text Search Specialty Data Store

backing up 152
bringing online 158
creating 20, 142
creating and batch sizes 82
displaying a list of 145
displaying online 148
dropping 144
example of creating 24–26
and the index table 7
metadata 6
that include multiple columns 22
optimizing 145
performance issues when updating 83
placing on multiple Enhanced Full-Text Search engines

84
and reindexing 146
replicating 23
restoring from backup in Enhanced version 75
setting location of backup files 68, 70
and tracing information 73
update using text_events table 8
updating 79
using a document filter with 32

text_db database 6, 75, 76
backing up 152
changing the name of 15, 18
restoring from backup 77
and the vesaux table 6
and the vesauxcol table 7

text_events table 8, 76
changing the status of entries 146
columns in 8
creating 17
example of creating 24
recording inserts, updates, and deletes 147
removing entries from 141
restoring from backup 76, 77
and sp_text_dump_database 76, 155
and sp_text_load_index 78

textsvr.cfg file
sample 161

thesaurus operator 50, 57
using a custom thesaurus 34

thesaurus, custom 34
and creating the control file 35
and examining the default thesaurus 35

and the mksyd utility 37
and replacing the default thesaurus 37

timestamp
sorting by 72

topic operator 41, 50, 58
topic set directories 40

mapping to 41
topics

creating a knowledge base map 40
creating a topic set directory 40
creating an outline file 39
creating complex relationships 39
description of 38
executing queries using 41
sample files 39
troubleshooting 42

trace flags 73
enabling trace flags 11 and 12 79
Open Server 74
setting to examine join orders 81

traceflags configuration parameter 68, 70
triggers for running sp_refresh_text_index 23

U
Unicode 169

and wildcard searches 73
Unicode support 169
unique index

adding to an IDENTITY column 20
example of creating 25

update operations
creating triggers for 23

update statistics
disabling 80

updates
and updating the text indexes 8

updating indexes 79
user

connections 83
sessions 83

user databases 75, 76
backing up 152
bringing online automatically 68, 70
bringing online for full-text searches 22, 158

Index

User’s Guide 179

displaying a list of text indexes for 145
displaying online 148
restoring from backup 77

user table.
See source table

V
vdkCharset configuration parameter 67, 69

setting the default 71
vdkHome configuration parameter 67, 70
vdkLanguage configuration parameter 67, 70

setting the default 70
Verity

setting the Verity directory 67
tracing Verity processing 73

Verity collections.
See collections

Verity query.
See full-text search queries

vesaux table
columns in 6
creating entries 143
removing entries from 141
removing entries when dropping text indexes 144
updating 20

vesauxcol table
columns in 7
removing entries when dropping text indexes 144
updating 20

W
wildcard operator 50, 58

using with data in Unicode format 73
with the case modifier 60
with the many modifier 60

Windows NT
directory paths xiv

word operator 50, 59
with the case modifier 60
with the many modifier 60

writetext command, using triggers with 23

Y
yesno operator 50, 60

Z
zones.

See document zones

Index

180 Enhanced Full-Text Search Specialty Data Store

	Enhanced Full-Text Search Specialty Data Store User’s Guide
	About This Book
	CHAPTER 1 Introduction
	Capabilities of the Enhanced Full-Text Search Engine
	High availability

	CHAPTER 2 Understanding the Enhanced Full-Text Search Engine
	Components of the Enhanced Full-Text Search engine
	The source table
	The Verity collections
	Filters
	The text_db database
	The vesaux table
	The vesauxcol table

	The index table
	The text_events table
	Relationships between the components

	How a full-text search works

	CHAPTER 3 Configuring Adaptive Server for Full-Text Searches
	Configuring Adaptive Server for an Enhanced Full-Text Search engine
	Enabling configuration parameters
	Running the installtextserver script
	Editing the installtextserver script
	Starting the installtextserver script

	Running the installmessages script
	Running the installevent script
	Editing the installevent script
	Running the installevent script

	Naming the local Adaptive Server

	Creating and maintaining text indexes
	Setting up source tables for indexing
	Adding an IDENTITY column to a source table
	Adding a unique index to an IDENTITY column

	Creating the text index and index table
	Specifying multiple columns when creating a text index

	Bringing the database online for full-text searches
	Propagating changes to the text index
	Replicating text indexes
	Example: enabling a new database for text searches
	Step 1. Verifing that the text_events table exists
	Step 2. Checking for an IDENTITY column or primary key
	Step 3. Creating a unique index on the IDENTITY column
	Step 4. Creating the text index and index table
	Step 5. Bringing the database online for a full-text search

	Indexing the euro symbol

	CHAPTER 4 Setting Up Verity Functions
	Enabling query-by-example, summarization, and clustering
	Editing the master style.prm file
	Editing individual style.prm files

	Setting up a column to use as a sort specification
	Using filters on text that contains tags
	Creating a custom thesaurus
	Examining the default thesaurus (optional)
	Creating the control file
	Control file syntax

	Creating the thesaurus
	Replacing the default thesaurus with the custom thesaurus

	Creating topics
	Creating an outline file
	Creating a topic set directory
	Creating a knowledge base map
	Defining the location of the knowledge base map
	Executing queries against defined topics
	Troubleshooting topics

	CHAPTER 5 Writing Full-Text Search Queries
	Components of a full-text search query
	Default behaviour

	Pseudo columns in the index table
	Using the score column to relevance-rank search results
	Using the sort_by column to specify a sort order
	Using the summary column to summarize documents
	Using pseudo columns to request clustered result sets
	Preparing to use clustering
	Writing queries requesting a clustered result set

	Full-text search operators
	Considerations when using Verity operators
	Using the Verity operators
	accrue
	and, or
	complement
	in
	like
	near, near/n
	or
	phrase
	paragraph
	product
	sentence
	stem
	sum
	thesaurus
	topic
	typo/n
	wildcard
	word
	yesno

	Operator modifiers

	CHAPTER 6 System Administration
	Starting the Enhanced Full-Text Search engine on UNIX
	Creating the runserver file

	Starting the Enhanced Full-Text Search engine on Windows NT
	Starting the Enhanced Full-Text Search engine as a service

	Shutting down the Enhanced Full-Text Search engine
	Modifying the configuration parameters
	Modifying configuration values
	Available configuration parameters
	Setting the default language
	Setting the default character set
	Indexing on the euro symbol
	Setting the default sort order
	Setting trace flags
	Setting Open Server trace flags
	Setting case sensitivity

	Backup and recovery for the Enhanced Full-Text Search engine
	Customizable backup and restore
	Backing up Verity collections
	Restoring collections and text indexes from backup

	CHAPTER 7 Performance and Tuning
	Updating existing indexes
	Increasing query performance
	Limiting the number of rows
	Ensuring the correct join order for queries

	Reconfiguring Adaptive Server
	cis cursor rows
	cis packet size

	Reconfiguring the Enhanced Full-Text Search engine
	batch_size
	min_sessions and max_sessions

	Using sp_text_notify
	Configuring multiple Enhanced Full-Text Search engines
	Creating multiple Enhanced Full-Text Search engines at start-up
	Adding Enhanced Full-Text Search engines
	Configuring additional Enhanced Full-Text Search engines

	Multiple users
	File Descriptors and Enhanced Full-Text Search

	CHAPTER 8 Verity Topics
	What are topics?
	Topic organization
	Weight assignments

	Using a topic outline file
	Making topics available
	Setup process

	Knowledge bases of topics
	Combining topics into a knowledge base

	Structure of topics
	Top-level topics
	Subtopics
	Evidence topics
	Topic and subtopic relationships

	Maximum number of topics
	Topic naming issues

	Verity query language
	Query language summary
	Evidence operators
	Proximity operators
	Relational operators
	Concept operators
	Boolean operators
	Modifiers

	Operator precedence rules

	Sample topic outlines
	Operator reference
	ACCRUE operator
	ALL operator
	AND operator
	ANY operator
	CONTAINS operator
	ENDS operator
	= (EQUALS) operator
	FILTER operator
	> (GREATER THAN) operator
	>= (GREATER THAN OR EQUAL TO) operator
	< (LESS THAN) operator
	<= (LESS THAN OR EQUAL TO) operator
	IN operator
	MATCHES operator
	NEAR operator
	NEAR/N operator
	OR operator
	PARAGRAPH operator
	PHRASE operator
	SENTENCE operator
	SOUNDEX operator
	STARTS operator
	STEM operator
	SUBSTRING operator
	THESAURUS operator
	TYPO/N operator
	WILDCARD operator
	Using wildcard special characters
	Searching for nonalphanumeric characters
	Searching for wildcard characters as literals
	Searching for special characters as literals

	WORD operator

	Modifier reference
	CASE modifier
	MANY modifier
	NOT modifier
	ORDER modifier

	Weights and document importance
	Topic weights
	Which operators accept weights
	How weights affect importance
	Assigning weights
	Automatic weight assignments
	Tips for assigning weights
	Changing weights

	Topic scoring and document importance
	Designing topics
	Preparing your topic design
	Understanding your information needs
	Understanding your documents
	Using scanned data
	Categorizing document samples

	Topic design strategies
	Top-down design
	Bottom-up design

	Designing the initial topic
	Outlining a topic
	Top-down topic outline example
	Establishing an information hierarchy
	Establishing individual search categories
	Establishing the topics to be built

	Bottom-up topic outline example
	Identifying low-level topics
	Categorizing related subtopics
	Establishing top-level topics

	APPENDIX A System Procedures
	sp_check_text_index
	sp_clean_text_events
	sp_clean_text_indexes
	sp_create_text_index
	sp_drop_text_index
	sp_help_text_index
	sp_optimize_text_index
	sp_redo_text_events
	sp_refresh_text_index
	sp_show_text_online
	sp_text_cluster
	sp_text_configure
	sp_text_dump_database
	sp_text_kill
	sp_text_load_index
	sp_text_notify
	sp_text_online

	APPENDIX B Sample Files
	Default textsvr.cfg configuration file
	The sample_text_main.sql script
	Sample files illustrating Enhanced Full-Text Search engine features
	Custom thesaurus
	Topics
	Clustering, summarization, and query-by-example

	getsend sample program

	APPENDIX C Unicode Support
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

